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Abstract

Statins are a family of drugs that are used for treating hyperlipidaemia with a recognized capacity to prevent cardiovascular
disease events. They inhibit β‐hydroxy β‐methylglutaryl‐coenzyme A reductase, i.e. the rate‐limiting enzyme in mevalonate
pathway, reduce endogenous cholesterol synthesis, and increase low‐density lipoprotein clearance by promoting
low‐density lipoprotein receptor expression mainly in the hepatocytes. Statins have pleiotropic effects including stabilization
of atherosclerotic plaques, immunomodulation, anti‐inflammatory properties, improvement of endothelial function,
antioxidant, and anti‐thrombotic action. Despite all beneficial effects, statins may elicit adverse reactions such as myopathy.
Studies have shown that mitochondria play an important role in statin‐induced myopathies. In this review, we aim to
report the mechanisms of action of statins on mitochondrial function. Results have shown that statins have several effects
on mitochondria including reduction of coenzyme Q10 level, inhibition of respiratory chain complexes, induction of
mitochondrial apoptosis, dysregulation of Ca2+ metabolism, and carnitine palmitoyltransferase‐2 expression. The use of
statins has been associated with the onset of additional pathological conditions like diabetes and dementia as a result
of interference with mitochondrial pathways by various mechanisms, such as reduction in mitochondrial oxidative
phosphorylation, increase in oxidative stress, decrease in uncoupling protein 3 concentration, and interference in amyloid‐β
metabolism.
Overall, data reported in this review suggest that statins may have major effects on mitochondrial function, and some of their
adverse effects might be mediated through mitochondrial pathways.
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Introduction

Cardiovascular diseases (CVDs), such as myocardial infarction,
angina, heart failure, and cerebrovascular accidents, contrib-
ute significantly to global mortality. World Health Organiza-
tion estimated 17.9 million deaths in 2017 due to CVDs,

representing 31% of the whole global mortality.1 The system-
atic analysis for the Global Burden of Disease Study estimates
that CVD‐associated mortality will raise to 23 million deaths
per year by 2030.2 Among the major risk factors, CVDs are as-
sociated with high plasma total cholesterol, low‐density lipo-
protein (LDL) cholesterol, and reduced high‐density
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Table 1 Statins and their structures and classification

Statin Generation Structure Hydrophilicity/lipophilicity

Lovastatin I Hydrophilic

Pravastatin I Lipophilic

Fluvastatin I Hydrophilic

Simvastatin II Hydrophilic

Atorvastatin II Hydrophilic

Rosuvastatin III Lipophilic

Pitavastatin III Hydrophilic

(Continues)
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lipoprotein cholesterol. CVD risk is reduced by ~22% per each
1 mmol/L LDL cholesterol decrease.3 There is overwhelming
evidence showing an increasing clinical benefit when greater
and earlier LDL cholesterol reductions are achieved.4 Apo
B‐containing lipoproteins (like LDLs), which are the key
sources of cholesterol, are responsible for initiation and pro-
gression of atherogenesis.5 Therefore, one of the main goals
of CVD prevention is LDL cholesterol level reduction.

β‐Hydroxy β‐methylglutaryl‐coenzyme A (HMG‐CoA) re-
ductase inhibitors, better known as statins, are among the
most effective lipid‐lowering agents.6 Besides lifestyle ap-
proaches like diet and exercise interventions,7 additional
cholesterol‐lowering therapies include nutraceuticals,8–10

ezetimibe, proprotein convertase subtilisin/kexin type 9 in-
hibitors, lomitapide, and mipomersen.11,12

In 1976, Akira Endo isolated from Penicillium citrinum, a
molecule (mevastatin) able to inhibit HMG‐CoA reductase, a
crucial enzyme in endogenous cholesterol biosynthesis.13

Statins are reversible and competitive HMG‐CoA reductase in-
hibitors and determine a reduction in serum and tissue levels
of total cholesterol, LDL cholesterol, apo B, and triglycerides.
Statins are prescribed in order to reduce plasma cholesterol
levels both in primary and secondary prevention of CVD.

Because HMG‐CoA is a key enzyme in the mevalonate
pathway, its inhibition results in a reduced bioavailability of
farnesyl pyrophosphate, geranylgeranyl pyrophosphate,
heme A, coenzyme Q10 (CoQ10; also known as ubiquinone),
and other metabolites that play essential roles in cellular
physiology.14,15 Moreover, cholesterol is not only a final prod-
uct of this biochemical pathway but also itself an intermedi-
ate for many other compounds, such as corticosteroids, bile
acids, and vitamin D.15 This explains why statins pharmacody-
namically exert pleiotropic effects,16–21 which are responsible
for both beneficial and adverse consequences during treat-
ment. Apart from their cholesterol‐lowering effect, statins
are known to contribute to stabilization of atherosclerotic
plaques,22 improvement of endothelial dysfunction,23 and
immunomodulation and show anti‐inflammatory,24 antioxi-
dant, and anti‐thrombotic effects.25 Lipid‐dependent and
lipid‐independent effects of statins may vary according to
the potency,6 lipophilicity (Table 1), and pharmacokinetic
properties14,26–28 of different agents.

Statins have been proved to be safe drugs. However, they
may elicit adverse reactions (muscle, metabolic, liver, and
neurological side effects), being muscle adverse effects the
most frequently reported.29 These adverse reactions are com-
monly named as statin‐associated symptoms (SAS).29 It is im-
portant to underline that the causative relationship between
statins and SAS is not always clearly demonstrable: some pa-
tients complaining of SAS can tolerate a low statin dose, and
some non‐specific side effects have been reported by patients
treated with placebo.29Most of SAS appear to be dose depen-
dent; half of the patients on high statin dosages stop the drug
within 1 year because of SAS.30–32 The risk of drug–drug inter-
action increases alongside with age and number of adminis-
tered drugs.33 Other risk factors for statin intolerance are
frailty, surgery, infection, female sex, exertion, hypothyroid-
ism, chronic kidney disease, and genetic predisposition.15,34

Statins may interfere with mitochondrial activity both via
direct mechanisms, i.e. impairment of electron transport
chain (ETC) complexes, and via indirect ones, i.e. as a conse-
quence of mevalonate pathway metabolites depletion, e.g.
CoQ10 and isoprenoids. Growing evidence is being provided
showing that SAS are mostly due not to their direct
cholesterol‐lowering effect but rather to the induced impair-
ment on mitochondrial function, as supported by histopatho-
logical, laboratory, and molecular findings in cell lines, rat
models, and humans.34,35 A better understanding of the
pathogenic background of SAS will be fundamental for quickly
identifying patients who are at major risk and acquire best re-
sults of treatment, so learning about their mechanisms, pro-
gression, and treatment is essential for better counteracting
adverse reactions of statins responsible for therapy
discontinuation.

Aims and methods

The aim of this review was to provide an overview of
achieved knowledge about mechanisms that underlie SAS, fo-
cusing on muscle effects, statin‐induced diabetes, and cogni-
tive impairment. In particular, we focused on statin‐driven

Table 1 (continued)

Statin Generation Structure Hydrophilicity/lipophilicity

Cerivastatin Withdrawn Lipophilic
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molecular mechanisms interfering both directly and indirectly
with mitochondrial function.

This review is based on evidence gathered performing a
PubMed query by using ‘statin AND mitochondria AND ad-
verse reaction’ as search terms. The search strategy was im-
plemented by hand searching the references reported by
the most relevant studies on this topic.

Statin‐associated muscle symptoms

Among all SAS, muscle side effects are the most frequently
reported.29,36,37 About 7–29% of patients complain of
statin‐associated muscle symptoms (SAMS).38 Symptoms
usually occur after 4–6 weeks of treatment initiation but
sometimes after many years.39 Weakness, pain, and muscle
fatigue are responsible for 30–62% statin treatment
discontinuation.40 SAMS present as a wide range of clinical
manifestations, such as myalgia, weakness, tendon pain,
night muscle cramping, and rhabdomyolysis in most severe
cases.41,42 Weakness and pain usually involve large back mus-
cles and proximal muscle groups symmetrically.43 Underlying
these manifestations is a statin‐induced myopathy (SIM),
whose pathophysiology has not been fully understood yet.44

Further, the lack of reliable laboratory biomarkers for diag-
nosing myopathy complicates its clinical identification. The
most used laboratory test is creatine kinase (CK) blood con-
centration, which however suffers from low sensibility and
specificity.45

Up to now, there is no universally established terminology
used to describe SIM. The National Lipid Association de-
scribes myopathy as muscle pain, soreness, weakness, and
cramps together with an at least 10‐fold increase in CK levels
above the upper limit of normal (ULN).46 European Athero-
sclerosis Society (EAS) defines myopathy as the presence of
muscle symptoms accompanied by CK over 10‐fold the
ULN.38 According to the American College of Cardiology/
American Heart Association/National Heart, Lung, and Blood
Institute, myopathy can be identified by either myalgia (with-
out CK elevation), myositis (CK elevation within 10‐fold the
ULN), or blunt rhabdomyolysis (CK elevation over 10‐fold
the ULN, increase in creatininemia, and reddish or brown
urine).47 On the contrary, rhabdomyolysis is defined by the
Food and Drug Administration (FDA) as a condition character-
ized by an increase in CK blood concentration over 50‐fold
the ULN associated with myoglobin‐induce acute renal
injury.48 Conversely, according to EAS, CK over 40‐fold the
ULN associated with renal impairment and/or myoglobinuria
configures the presence of rhabdomyolysis.38 Importantly, al-
beit rhabdomyolysis is the most severe statin‐associated side
effect, it is a rare complication occurring in about 0.01% of
treated patients.49 Myoglobinuria, deriving from muscle ne-
crosis and the release of myoglobin in the blood circulation,

can cause mechanical obstruction and acute necrosis of the
renal tubules and subsequently acute renal failure, a poten-
tially life‐threatening complication.50

Statin‐associated muscle symptom definition refers to any
muscle symptom related to statin treatment. In this frame,
the EAS Consensus suggested three criteria for the diagnosis
of SAMS: correspondence between CK levels increase and on-
set of statin treatment; decline of symptoms at treatment
withdrawal; and symptoms recurrence at statin treatment
rechallenging.38 However, it must be underlined that SAMS
might occur in patients who do not show increased CK blood
concentrations.29

Mitochondria

Mitochondria are organelles often referred to as the power
station of eukaryotic cells, because several phases of cellular
respiration take place there, such as the Krebs cycle, the oxi-
dative phosphorylation, and fatty acid β‐oxidation.51 Oxida-
tive phosphorylation is a key biochemical pathway in
cellular respiration and is carried out by several protein com-
plexes and molecules that are located at the inner mitochon-
drial membrane (IMM). It consists of two subsequent steps,
the ETC and ATP synthesis. ATP synthesis consists of phos-
phorylation of ADP to ATP catalysed by ATP synthase, thanks
to the proton motive force following the electrochemical gra-
dient across the IMM. This electrochemical gradient is
sustained by the proton translocation from mitochondrial
matrix to intermembrane space (IMS) mediated by com-
plexes I, III, and IV of the ETC.52

Complex I (NADH : ubiquinone oxidoreductase) is responsi-
ble for reduction of NADH yielded during glycolysis and Krebs
cycle. While transferring electrons from NADH, thereby re-
ducing ubiquinone to ubiquinol, it mediates transport of four
protons (H+) from mitochondrial matrix to the IMS. Complex
II (succinate : ubiquinone oxidoreductase) is part of the Krebs
cycle. It catalyses succinate oxidation to fumarate while re-
ducing ubiquinone to ubiquinol. Different to other com-
plexes, complex II does not transport protons across the
membrane. Complex III (cytochrome bc1) catalyses reoxida-
tion of ubiquinol (moving freely along the IMM and yielded
by complex I and II enzymatic activities) to ubiquinone, trans-
ferring electrons to the membrane‐attached cytochrome c
and four protons from matrix to IMS. Eventually, cytochrome
c is again oxidized by complex IV (cytochrome c oxidase) that
yields H2O from transferring electrons to O2 and transfers
four protons against gradient across the IMS.52 The electron
transport system (ETS) is thought to be an important source
of reactive oxygen species (ROS). As a consequence of many
redox reactions, mitochondria yield an important amount of
ROS, which can act either as cell signalling molecules or as ox-
idative stress factors52–54 (Figure 1).
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Statin‐associated muscle symptoms
and mitochondrial dysfunction

Mitochondrial dysfunction is believed to play a pivotal role in
the pathogenesis of SAMS, because skeletal muscles are avid
energy consumers and closely depend on mitochondrial
activity.55 This is supported by histopathological findings,
evidencing how SIM is characterized by lipid aggregation in
mitochondria and ragged red fibres accumulating in
subsarcolemmal region visible with Gömöri staining.56,57 Ab-
normal high blood lactate/pyruvate ratio58 and increased
mean metabolic recovery time as assessed by 31P magnetic
resonance spectroscopy59 in statin‐treated patients when
compared with untreated hypercholesterolaemic and healthy
controls add evidence to this hypothesis. However, neither
the LIFESTAT study nor 8 week treatment with simvastatin
80mg/day on healthy subjects proved any difference in mito-
chondrial function after statin treatment.61,62 According to
the LIFESTAT study, 20 healthy middle‐aged men were
treated with 80 mg/day simvastatin (n = 10) or 40 mg/day
pravastatin (n = 10). After 14 days, 50% of participants pre-
sented a different range of side effects from soreness, myal-
gia, to stomach ache, but no changes in mitochondrial

function with respect to respiratory chain capacity, mitochon-
drial density, or Q10 content, except a reduction in complex
IV activity in both groups.61 Hou et al. found the presence
of mitochondrial dysfunction and abnormal respiratory chain
enzyme activity in 24% and 10%, respectively, among 279 bi-
opsies from patients with SIM. Hence, whether mitochondrial
dysfunction may be considered a frequent pathogenic hall-
mark of SAMS is still debated.63

In the following sections, the proposed pathogenetic
mechanisms of SAMS involving mitochondrial dysfunction
are described (Table 2).

Depletion of coenzyme Q10

Coenzyme Q10 (alias ubiquinone) is a hexameric quinone ring
containing a 10‐isoprenyl unit side chain; it is structurally sim-
ilar to vitamin K and can be found in the hydrophobic layer of
all cell membranes in mammalians. Ubiquinone is an end
product of the mevalonate pathway but can be supplied by
diet being mostly present in some meats like beef, pork,
and chicken64,65 and by dietary supplements/
nutraceuticals.66 Because of its chemical structure, CoQ10
presents a high antioxidant activity. The highest tissue

Figure 1 Effects of statins on mitochondrial function: (i) reduction in mitochondrial membrane potential; (ii) reduction in coenzyme Q10 (CoQ10) and
GLUT‐4 expression; (iii) increased reactive oxygen species (ROS) level and induction of intrinsic apoptosis; (iv) deregulation of Ca2+ metabolism; (v) mi-
tochondrial depletion; (vi) decrease in uncoupling protein 3 (UCP3) expression and reduction in β‐oxidation efficiency; (vii) increase in amyloid‐β (Aβ)
concentration in mitochondria; (viii) direct inhibition in respiratory chain. A, atorvastatin; C, cerivastatin; F, fluvastatin; HMG‐CoA, β‐hydroxy β‐meth-
ylglutaryl‐coenzyme A; mtDNA, mitochondrial DNA; PP, pyrophosphate; S, simvastatin.
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concentrations of CoQ10 can be found in the kidney, liver,
and heart.67 As previously described, CoQ10 is an essential
component of the ETC and therefore plays a pivotal role in
cellular energy yield. Primary CoQ10 deficiency has been de-
tected in several diseases comprising heart failure, nephrotic
syndrome, and muscular and neurological disorders.68,69 In
addition, secondary CoQ10 deficiency may occur. In this re-
gard, the inhibitory effect of statins on the mevalonate path-
way (Figure 1) may reduce CoQ10 levels by 16–54% 64 and
cause mitochondrial dysfunction, revealed by inhibition of mi-
tochondrial ETC complexes,70,71 disruption of mitochondrial
membrane potential, decrease in mitochondrial DNA
(mtDNA) copy number, interference with oxidative phosphor-
ylation, mitochondrial swelling, and release of cytochrome
c.71,72 However, decrease in plasma CoQ10 level is mostly
due to the reduction of circulating lipoproteins, because
around 74% of CoQ10 is carried in the blood by apo
B‐containing lipoproteins.64 Accordingly, no significant

difference in CoQ10 to total cholesterol ratio was found be-
fore and after statin treatment.

Scarce and contradictory data are available about the im-
pact of statin treatment on skeletal muscle CoQ10
concentration.73 In a randomized controlled trial, 8 weeks of
treatment with simvastatin 80 mg/day but not the treatment
with atorvastatin 40 mg/day or placebo was associated with
a significant decrease in muscle ubiquinone concentration.72

Analyses from a subgroup of patients showed that those with
markedly reduced muscle CoQ10 had concurrent reduction in
respiratory chain enzyme and citrate synthase activities.72

However, conflicting data showing either increase or no
change in muscle ubiquinone concentrations after both
short‐term and long‐term statin treatments have been
provided.74–76

Recent meta‐analyses on the topic have led to controversial
results about the effectiveness of CoQ10 supplementation in
statin‐treated patients in improving SIM and SAMS.77,78

Table 2 Overview on statin mechanisms of mitochondrial toxicity

Type of
statin Mechanism Adverse effect Reference
Atorvastatin Inhibition of complexes I, III, and IV Myopathy Salviati et al.

68

Dysregulation of calcium homoeostasis Myopathy Liantonio et al.60

Reduction in CoQ10 concentration Myopathy Saha and Whayne69

mtDNA depletion Myopathy Saha and Whayne69

PGC‐1/Akt pathway disruption Myopathy Mullen et al.83

ROS accumulation and oxidative stress Induced apoptosis Dirks and Jones104

Akt pathway disruption Induced apoptosis Mikus et al.81

Impaired insulin secretion Diabetes Shepherd et al., Sattar et al., and
Sadighara et al.130,132,133

Unknown Cognitive
impairment

Ott et al. and Swiger et al.153,154

Fluvastatin Inhibition of complexes I, III, and IV Myopathy Salviati et al.68

Dysregulation of calcium homoeostasis Myopathy Liantonio60

Lovastatin CPT‐2 inhibition Myopathy Ghatak et al.123

Reduced activity of complex IV Myopathy Sirvent et al.91

Impaired insulin secretion Diabetes Shepherd et al.130

Pravastatin Inhibition of complex IV Myopathy Phillips et al.57

Rosuvastatin Akt pathway disruption Induced apoptosis Mikus et al.81

Simvastatin Impaired ETC function Myopathy Salviati et al., Saha and Whayne,
Vaughan et al., Kwak et al., and Sirvent et al.68,69,83,85,88,91

Reduction in CoQ10 muscle
concentration

Myopathy Saha and Whayne and Sirvent et al.69,91

mtDNA depletion or reduced
citrate synthase activity

Myopathy Saha and Whayne, Lamperti et al.,
Banach et al., Qu et al., and Schick et al.69,76–79

PGC‐1/Akt pathway disruption Myopathy Åberg et al., Stringer et al., and Singla et al.67,80,82

Dysregulation of calcium homoeostasis Myopathy De Pinieux et al., Murlasists and Radák,
and Herminghaus et al.58,95,96

Inhibition of complex IV Myopathy Phillips et al.57

Calpain activation Induced apoptosis Hermann et al.103

ROS accumulation and oxidative stress Induced apoptosis Vaughan et al.85

Isoprenoid depletion Induced apoptosis Novelli and D’Apice and Guijarro et al.109,110

Akt pathway disruption Induced apoptosis Stringer et al. and Mikus et al.80,81

Peripheral insulin resistance Diabetes Sadighara et al. and Moro et al.136,140

Unknown Cognitive
impairment

Ott et al.153

Cerivastatin Inhibition of complexes I, III, and IV Myopathy Salviati et al.68

Reduced activity of complex IV Myopathy Brookes53

Isoprenoid depletion Induced apoptosis Hosseinzadeh et al.108

CoQ10, coenzyme Q10; CPT‐2, carnitine palmitoyltransferase‐2; ETC, electron transport chain; mtDNA, mitochondrial DNA; PGC‐1, perox-
isome proliferator‐activated receptor gamma coactivator 1; ROS, reactive oxygen species.
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Mitochondrial depletion and oxidative stress

A significative reduction in mtDNA/nuclear DNA ratio was ob-
served after 8 weeks of 80 mg/day simvastatin but not after
8 weeks of 40 mg/day atorvastatin.79 The findings of this ran-
domized controlled trial suggested a major impact of simva-
statin on mitochondrial depletion due to its lipophilicity.
Notably, changes in mtDNA/nuclear DNA ratio were irrespec-
tive of muscle symptoms but strongly associated with muscle
CoQ10 concentration.79 These results were replicated in a
small cohort of patients experiencing SIM.80

Exercise training can enhance mitochondrial function by in-
creasing oxygen uptake by ~10% and citrate synthase activity,
a marker of skeletal muscle mitochondrial content, by 13% in
overweight or obese patients after 12 week exercise
training.81 The addition of 40 mg/day simvastatin led to a
lower increment of oxygen uptake during exercise training
(1.5%) and a 4.5% reduction in citrate synthase activity.81

Similar results (3.6% reduction in citrate synthase activity
and cardiorespiratory fitness impairment) have been re-
ported in a cohort of patients with type 2 diabetes mellitus
(T2DM) treated with 40 mg/day simvastatin for 12 weeks.82

Intriguingly, vitamin D supplementation resulted effective in
preventing statin‐related decrease in mitochondrial content
and impairment in cardiorespiratory fitness.82

Statin‐induced toxicity could be due to the reduced phos-
phorylation of protein kinase B (Akt) and subsequent disrup-
tion of its pathway, which plays an important role in the
mitochondrial health.83,84 The Akt pathway disruption is
probably caused by decreased transcription and translation
rates of peroxisome proliferator‐activated receptor gamma
coactivator (PGC)‐1α and PGC‐1β. In fact, these transcrip-
tional co‐factors act as activators of the Akt pathway and
are considered master inductors of mitochondrial
biogenesis.85 Different cell lines both in vitro and in vivo have
shown to be differentially susceptible to the disruption of the
Akt pathway. Primary mouse skeletal muscle myocytes,
C2C12 myotubes,83 human rhabdomyosarcoma cells,85 and
skeletal muscle cells from deltoid biopsies70 were susceptible
to statin treatment in terms of mitochondrial dysfunction, as
assessed by several parameters, including PGC‐1α mRNA
transcription and mitochondrial oxidative capacity. Interest-
ingly, mitochondrial dysfunction could be rescued either by
administration of ubiquinol,85 exogenous antioxidant agents,
or by PGC‐1α overexpression.70 In similar studies done on
various models such as murine liver HepG2 cells,83 oxidative
muscle fibres,86 and human cardiac muscle fibres,70 statins
showed mitochondrial dysfunctions. The production of ROS
and oxidative stress could be crucial hallmarks of
statin‐induced toxicity and have a role in regulating mito-
chondrial biogenesis.87,88 In cells with high‐efficient antioxi-
dant systems, as cardiac myofibres, statin‐induced ROS
accumulation is limited and stimulates PGC‐1α activity, thus

promoting mitochondrial biogenesis and improving mito-
chondrial function. On the other hand, in cells with lower an-
tioxidant capacity, such as fast glycolytic muscle fibres, a
greater ROS increase could be responsible for the Akt path-
way disruption.70,86 The differential response in terms of mi-
tochondrial biogenesis according to ROS production is known
as mitochondrial hormesis and can explain why some tissues
and cells, in particular fast muscle fibres, are more suscepti-
ble to statin toxicity.70 It is notable that PGC‐1β knockout
mice showed mitochondrial dysfunction, increased ROS pro-
duction, and induced apoptosis after oral administration of
5 mg/kg/day atorvastatin per 2 weeks both in glycolytic and
oxidative muscle fibres.86

Inhibition of electron transport chain complexes

Direct inhibition of ETC complexes has been proposed as a re-
sponsible mechanism for SIM.63,88–90 In vitro, functional im-
pairment of complexes I, III, and IV occurred in L6 rat
skeletal muscle cells after a 24 hour exposure to 100 μmol/
L cerivastatin, simvastatin, fluvastatin, or atorvastatin. On
the contrary, no functional impairment was reported after
exposure up to 1 mmol/l pravastatin.71 These findings were
confirmed in human myocytes, onto which simvastatin acts
mostly as an inhibitor of complex I.91 However, assays on
fresh and frozen muscle samples from rats treated with dif-
ferent statin regimens failed to identify abnormalities in ETC
complexes activity.92,93 A randomized controlled trial showed
significant reduction in all ETC complexes activity in patients
treated with simvastatin 80 mg/day for 8 weeks but not in
those treated with atorvastatin 40 mg/day or placebo.72

However, a systematic review of several studies on cell cul-
tures, animal models, and humans showed highly contradic-
ting results on this topic.34

In two patients affected by statin‐induced rhabdomyolysis,
skeletal muscle biopsies showed reductions in ubiquinone
concentration and in complex IV activity.94 A significant re-
duction by 60% of complex IV activity was identified in a pa-
tient presenting myoglobinuria after treatment with
cerivastatin and gemfibrozil.56

Statins are known to interfere with beneficial exercise train-
ing adaptations, which mostly rely on improvements of the
mitochondrial function,81,82,95 and could be due to ETC com-
plexes activity impairment.81 Finally, it has been suggested
that impaired ETC function could be found out in other tissues
as well, though data on these aspects are still very scarce.96

Dysregulation of Ca2+ metabolism

As a consequence of mitochondrial dysfunction, studies on
both animal and human models have identified an increased
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Ca2+ efflux from the sarcoplasmic reticulum, leading to ab-
normalities in excitation–contraction coupling in skeletal
muscle cells.97 Sirvent et al. hypothesized that ETC disrup-
tion (and, above all, complex I inhibition) due to statin treat-
ment could be responsible both in vitro and in vivo for
calcium metabolism deregulation.98 Alterations in spontane-
ous Ca2+ sparks (e.g. frequency and amplitude) in muscle
cells indicate impaired Ca2+ homoeostasis.99 Decreased fre-
quency of spontaneous Ca2+ sparks was found in patients
treated with statin and complaining muscle symptoms but
not in asymptomatic statin‐treated patients when compared
with healthy controls.98 Increased Ca2+ spark amplitude was
found in all statin‐treated patients when compared with
controls98 and in individuals treated with 80 mg/day simva-
statin for 8 weeks displaying increased serum CK
concentrations.62 Statins have been demonstrated both
in vivo and in vitro in animal and human models to raise cy-
tosolic and sarcoplasmic Ca2+ concentration: this increase
does not seem to be attributable to abnormal sarcolemma
permeability but rather to a primary Ca2+ efflux from mito-
chondria mediated by mitochondrial permeability transition
pore and Na+–Ca2+ exchanger.99 The latter secondarily leads
to Ca2+ release from the sarcoplasmic reticulum mediated by
ryanodine receptors.60,70,96 The abnormal opening of mito-
chondrial permeability transition pore and Na+–Ca2+ ex-
changer may be caused by the decrease of mitochondrial
membrane potential and depolarization of the IMM as a
consequence of disrupted ETC activity.99

Lactone toxicity

Statins are available in two different forms: hydroxy acid (ac-
tive molecule) and the lactone (inactive prodrug). Intercon-
version through these two forms occurs spontaneously
according to environmental pH or can be catalysed by en-
zymes, such as glucuronosyltransferases.100 Lactone forms
are more lipophilic and therefore more capable of crossing
cell membranes and exerting their pharmacological
activity.100 Lactone forms have been described as more
myotoxic both in rat and human cells in vitro.101,102 Individ-
uals affected by SIM showed higher circulating levels of lac-
tone metabolites than controls.103 Acute administration of
lactone forms of atorvastatin, cerivastatin, and pitavastatin
in C2C12 myoblasts elicited a fast decrease of oxygen con-
sumption rate, indicating a net inhibitory effect on mitochon-
drial respiratory function.90 In particular, lactone forms
showed a higher capacity to impair ETC complex III activity.90

Therefore, the conditions altering the hydroxy acid/lactone
forms ratio, such as pH disturbances and pharmacokinetic in-
teractions, might play a role in amplifying the muscle damage
of statin treatment.

Apoptosis

Statin‐induced mitochondrial dysfunction has been corre-
lated in vitro with an abnormal activation of the intrinsic
apoptosis pathway, as a consequence of a decrease in the
Bcl‐2/Bax ratio. The statin‐induced apoptosis occurs in differ-
ent tissues and might be responsible for both beneficial pleio-
tropic and detrimental side effects of statin treatment.88,104

Several mechanisms have been proposed to explain the
abnormal apoptosis in cells exposed to statins. In vitro studies
on human primary skeletal muscle cells identified calpain, a
calcium‐dependent protease implicated in a variety of cellular
processes such as signal transduction, cell proliferation, cell
cycle progression, differentiation, and apoptosis,105 as a plau-
sible upstream effector for the statin‐induced initiation of the
intrinsic apoptotic pathway, which is only partially dependent
on mevalonate depletion.106 In fact, statin‐induced calpain
activation could be subsequent to increased Ca2+ sarcoplas-
mic concentration, as discussed previously, and is responsible
for Bax translocation to the outer mitochondrial membrane
(OMM), leading to cytochrome c release into the cytosol
and eventually to apoptosome assembly and activation of
the caspases cascade.106

Accumulation of ROS as a consequence of ETC impairment
could contribute to inducing mitochondria‐mediated
apoptosis.88,107 Treatment with 10 mg/kg/day atorvastatin
for 2 weeks suggests that statin‐induced muscle cell apopto-
sis could be strictly dependent on the muscle fibre’s meta-
bolic phenotype. However, administration of quercetin, an
antioxidant agent, resulted in apoptosis inhibition in fast gly-
colytic skeletal muscle fibres.107 On the other hand, pretreat-
ment with atorvastatin was able to protect human
chondrocytes from high‐glucose oxidative stress, by inducing
expression of antioxidant enzymes, reducing ROS levels, and
down‐regulating the Bax/Bcl‐2 ratio and caspase‐3
activation.108 Altogether, these findings imply that the differ-
ential cellular response to oxidative stress is an important de-
terminant of tissue susceptibility to statins not only in terms
of mitochondrial function but also in terms of apoptosis in-
duction, according with the aforementioned concept of mito-
chondrial hormesis.70

Impairment of mitochondrial energy production affects
isoprenoid biosynthesis. Statin treatment leads to depletion
of isoprenoids compounds, such as farnesyl pyrophosphate
and geranylgeranyl pyrophosphate, as a consequence of the
blockade on the mevalonate pathway.14 Protein farnesylation
and geranylgeranylation are essential reactions for maintain-
ing cellular homoeostasis.109 Depletion of isoprenoids may
have a role in statin‐related apoptosis induction, because
HMG‐CoA—but not squalene synthase inhibition—resulted
in myotoxicity.104,110,111 Isoprenoid depletion is likely to
cause abnormal activation of γ‐phospholipase C and PI3K sig-
nalling pathways,89,112,113 thus leading to alteration in
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calcium metabolism with the related detrimental
consequences.104 Finally, statins might alter the phosphoryla-
tion state of Akt by interfering with pathways involved in cell
survival.83,84 Despite a large amount of in vitro experiments,
very few in vivo studies are currently available about the ap-
optotic effects of statins.

Genetic background influences
susceptibility to statin‐associated
symptoms

Polymorphisms on genes encoding for proteins involved in
mitochondrial processes can modify the cell susceptibility to
statin mitochondrial adverse effects. In fact, subclinical ge-
netic mutations or polymorphisms have been associated with
higher risk of SAS and SAMS.114 Polymorphisms on gene
COQ2, encoding for an enzyme involved in endogenous ubi-
quinone biosynthesis, have been associated to SAS and
SAMS.115 Similar findings have been reported for ATP2B1,
encoding for a calcium transporting ATPase, and DMPK,
encoding for a protein kinase with pathogenic implications
in myotonic dystrophy.116

GATM gene

The GATM gene encodes for the mitochondrial enzyme gly-
cine amidinotransferase, which is the rate‐limiting enzyme
in creatine biosynthesis.117 In a study carried out on
lymphoblastoid cells of 480 statin‐treated individuals, acute
in vitro administration of simvastatin was associated with re-
duced gene expression levels and with reduced creatine syn-
thesis in carriers of the rs9806699 single nucleotide
polymorphism.118 Moreover, the minor GATM allele, which
is responsible for a reduced creatine yield, was associated
with lower SIM rates but not with CK concentration in two
different populations treated with 40 mg/day simvastatin
for 6 weeks.118 Although no causal mechanism can be in-
ferred, it was speculated that reduced phosphocreatine stor-
age impairs adenosine monophosphate‐activated protein
kinase signalling, in a way that could be protective against
glucose and/or cholesterol deprivation.118,119 However, these
data were not replicated in subsequent studies.120,121 Areas
of uncertainty still exist on this topic.

Mitochondrial encephalopathy, lactic acidosis, and
stroke‐like episodes syndrome

Mitochondrial encephalopathy, lactic acidosis, and stroke‐like
episodes syndrome is an archetypical model of mitochondrial
genome inheritable disease. Because all mtDNA genes encode

for mitochondrial proteins, these pathologies are character-
ized by dysfunctions in organs and tissues with high‐energy
requirements.122 Statin treatment has been shown to disclose
several cases of previously asymptomatic mitochondrial en-
cephalopathy, lactic acidosis, and stroke‐like episodes syn-
drome, possibly as a consequence of reduction in
mitochondrial number and volume79,123 or as a consequence
of CoQ10 depletion,123,124 as discussed previously.

Carnitine palmitoyltransferase‐2 deficiency

Carnitine palmitoyltransferase‐2 (CPT‐2) is an IMM enzyme
that allows acyl‐CoA to undergo β‐oxidation in mitochondrial
matrix. CPT‐2 deficiency is the most common disorder of lipid
metabolism and shows up with recurrent myalgia, rhabdomy-
olysis, and myoglobinuria that is precipitated by physical ex-
ercise, cold, infections, emotional stress, or fasting, usually
during adulthood. Laboratory tests display high plasma
acylcarnitine levels and acylcarnitine/carnitine ratio.125 Such
laboratory findings were found in a rabbit model treated with
30 mg/day lovastatin for 16 weeks, whereas the liver, heart,
and skeletal muscle carnitine concentrations decreased after
treatment. Interestingly, CPT‐2 activity was significantly in-
creased in the heart and liver but not in skeletal muscle.126

In a case–control study, the frequency of the CPT‐2 heterozy-
gous mutation was 13‐fold higher over the expected general
population rate in patients affected by SIM. Statin treatment
in those patients could be responsible for an impairment in
CPT‐2 activity, leading to a critical reduction of the enzyme
overall activity and eliciting homozygous‐like clinical
manifestations.114 These results corroborate the hypothesis
that statin‐induced mitochondrial dysfunction could also oc-
cur as impaired fatty acid oxidation, as suggested by histo-
pathological findings.57 The abnormally increased
respiratory exchange ratio in patients who had experienced
myositis127 but not in those without SAMS128 provides fur-
ther evidence. Moreover, in high‐fat‐fed apoE knockout mice
experiencing impaired exercise training adaptation after
statin treatment, the administration of trimetazidine, a β‐ox-
idation inhibitor, was successful in reversing statin‐induced
muscle injury,129 suggesting that lipid metabolism disruption
could be one of the several pathological mechanisms for
SAMS.

Statin‐induced diabetes and
mitochondrial function

In the Prospective Study of Pravastatin in the Elderly at Risk
(PROSPER), the use of pravastatin (40 mg/day) in old patients
was associated with an increased incidence of T2DM.130

Similarly, in the Justification for the Use of Statins in Primary
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Prevention: Intervention Trial Evaluating Rosuvastatin
(JUPITER) trial, a significantly higher incidence of new‐onset
diabetes occurred in the rosuvastatin group when compared
with the placebo group during the 2 years of statin
administration.131 A large meta‐analysis of 13 trials including
91 140 patients reported a significant 9% increase in the risk
of T2DM among patients treated with statins.132 Because of
these findings, FDA imposed to report the risk of new‐onset
diabetes on statin safety labels.

In an experimental setting, rats treated with 80 mg/kg/
day lovastatin or 20 mg/kg/day atorvastatin for 2 weeks
displayed increased glucose levels and decreased insulin se-
cretion compared with controls.133 Statin‐treated rats also
showed increased pancreatic cells ROS production,
disrupted membrane potential, mitochondrial swelling, and
reduced complex IV activity.133 Administration of CoQ10
and L‐carnitine separately or together was able to partially
but significantly blunt these statin‐induced abnormalities.133

We herein discuss the mitochondria‐related mechanisms
potentially explaining the increased risk of T2DM in
statin‐treated patients.

Impaired insulin secretion

ATP levels are crucial in beta cells because they regulate the
KATP channel closure that leads to cell depolarization and to
insulin secretion. Mitochondrial dysfunction in beta cells
could impair insulin secretion.134 In a study on human pan-
creatic islets and in rat insulinoma INS‐1 cells, atorvastatin—
but not pravastatin—impaired both basal and
glucose‐induced insulin secretion.135 This phenomenon is
likely to be attributed to a significant decrease in ATP basal
levels and ATP production rate, which is subsequent to a time
and dose‐dependent reduction in complexes I, III, and IV, and
ATP synthase expression in atorvastatin‐exposed cells.135

Both mevalonate administration and N‐acetylcysteine, an an-
tioxidant agent, were able to rescue the impaired insulin se-
cretion in statin‐exposed cells.135 In rat isolated pancreatic
mitochondria, exposure to >75 μM atorvastatin significantly
impaired complex II activity and reduced ATP levels.136

Nevertheless, experiments with patch clamping suggested
that statins might impair insulin secretion by inhibiting L‐type
voltage‐dependent Ca2+ channel as well, preventing the Ca2+

cytosolic concentration increase that is fundamental for insu-
lin secretion.137 The contrasting results obtained with atorva-
statin and pravastatin account for their different diabetogenic
potential.138

Atorvastatin exposure determined a significant increase in
ROS levels both in human pancreatic islets and in INS‐1 rat
insulinoma cells135 and in rat isolated pancreatic
mitochondria136 in a time and dose‐dependent manner. Be-
cause pancreatic beta cells have weak antioxidant systems,
oxidative stress may be crucial for beta‐cell dysfunction, thus

increasing the risk of new‐onset diabetes during statin
treatment.136

Finally, CoQ10 concentration was reduced by atorvastatin
administration as well, leading to ETC activity impairment.135

As a consequence of ETC activity disruption, atorvastatin
caused a decline in mitochondrial membrane potential, mito-
chondrial swelling, and cytochrome c release,136 thus leading
to intrinsic apoptosis induction in the pancreas.

Peripheral insulin resistance

Statins could also induce peripheral insulin resistance via dif-
ferent pathways. Simvastatin determined a reduction in
insulin‐dependent glucose transporter GLUT4 expression in
3T3‐L1 adipocytes, and this phenomenon could be rescued
by CoQ10 administration.139 The accumulation of non‐esteri-
fied fatty acids in skeletal muscle cells is responsible for insu-
lin resistance.140 Mitochondrial uncoupling protein (UCP)‐3 is
a protein located in the IMM that acts as a fatty acid carrier,
favouring their β‐oxidation.141 Patients affected by T2DM
show lower expression of UCP3.142 A case–control study
pointed out a significantly reduced UCP3 expression in pa-
tients treated with simvastatin.143 The complex relationship
among statins, UCP3, and insulin resistance has not been fully
clarified yet. Though no causative mechanisms can be in-
ferred, it can be hypothesized that statins could play a role
in determining skeletal muscle insulin resistance by
down‐regulating UCP3 expression.

Cognitive impairment and dementia

Many studies have been published in the last two decades
about the relationship between statin treatment and cogni-
tive function. Like skeletal muscle, brain tissue has a high
metabolic demand and hence suffers from mitochondrial
vulnerability.144

A large retrospective study showed an increased risk for
both Alzheimer’s disease and vascular dementia in hypercho-
lesterolaemic patients after a three‐decade follow‐up.145

Intriguingly, several case reports146,147 and two random-
ized controlled trials148,149 suggested a potential association
between statin treatment and cognitive impairment, leading
FDA to include in the warning section of all statin labels a
statement about the risk for reversible memory loss or im-
pairment. Contrariwise, large trials,130,150 a Cochrane data-
base systematic review,151 a consensus statement by the
Statin Cognitive Safety Task Force,152 and more recent
meta‐analyses153,154 failed to demonstrate any effect of
statin treatment on cognitive function, while a large
meta‐analysis even showed a great risk reduction for demen-
tia associated with statin treatment.155 An extensive and
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punctual review about the state of the art on this topic has
been recently published.156

It is plausible that these contradicting results derive from
different mechanisms that might be responsible for both cog-
nitive protective effect of statins and treatment‐related ad-
verse cognitive effects.156

In terms of mitochondrial function, the pathological basis
for these contradictory results is completely to be elucidated.
It is conceivable that the mechanisms implicated in SAMS,
such as CoQ10 depletion, ROS accumulation, and mitochon-
drial membrane depolarization, could account for cognitive
impairment too. Accordingly, genetic disorders,
dysthyroidisms, or the metabolic syndrome, which all under-
lie mitochondrial disfunction, are well‐known risk factors for
statin‐related cognitive adverse effects.15,157 However, it
must be underlined that simvastatin was able to protect a
neuroblastoma cell line (i.e. SH‐SY5Y) from amyloid‐β neuro-
toxicity by improving several aspects of mitochondrial func-
tion (e.g. cytochrome c release, ROS production, Bcl‐2/Bax
ratio, and membrane potential).158 In addition, in a cellular
model of mitochondrial dysfunction (i.e. cybrid), low‐dose
(1 μM) simvastatin reduced hypoxia‐inducible factor 1α and
β‐site amyloid precursor protein cleaving enzyme, the latter
molecules promoting amyloid‐β production. However, higher
dose of simvastatin (10 μM) increased hypoxia‐inducible fac-
tor 1α and β‐site amyloid precursor protein cleaving enzyme
expression both in the cybrid and control cell models,159 thus
suggesting that statin dose might differentially affect neuro-
nal function irrespective of mitochondrial activity.

Conclusions

Besides the well‐known beneficial effects in primary and sec-
ondary prevention of CVD, statins may induce adverse ef-
fects, like myopathy. Mitochondrial dysfunction is likely to
play an important role in the pathogenesis of these adverse
reactions due to CoQ10 depletion, inhibition of ETC com-
plexes, depletion of mevalonate pathway end products,

membrane depolarization and induction of intrinsic apopto-
sis, dysregulation of calcium metabolism, and fatty acid oxida-
tion. Chronic statin treatment has been associated with
increased risk for T2DM and cognitive impairment. The bene-
ficial effects of statin treatment are not questionable; how-
ever, the widespread usage of these drugs and the
considerable prevalence of side effects require the underlying
pathological mechanisms to be carefully studied.
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