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Nitric oxide and hypertension: not just an
endothelium derived relaxing factor!
S Chowdhary and JN Townend
Department of Cardiovascular Medicine, University of Birmingham, Birmingham, UK

The importance of endothelial nitric oxide (NO) gener-
ation in sustaining a tonic systemic vasodilatation is
well established. Inhibiting NO production produces
hypertension in animals and in humans and not surpris-
ingly there has been considerable interest in estab-
lishing whether deficiencies of endothelial NO pathway
activity are implicated in the aetiology of essential
hypertension. The results of these investigations have
been inconsistent with some suggestion that observed
deficiencies of both basal and stimulated endothelial NO
generation in hypertensive subjects may be an effect
rather than the cause of raised arterial pressure. It is
increasingly recognised that neuronal production of NO
also influences cardiovascular homeostasis through its
action as a neuromodulator within the autonomic ner-
vous system. Overall NO has been shown to have sym-

Keywords: hypertension; nitric oxide; autonomic nervous system

Introduction
The mechanisms initiating primary or essential
hypertension remain obscure and it is possible that
the term encompasses a group of disorders with
diverse aetiologies. The basic determinants of blood
pressure are cardiac output and peripheral vascular
resistance and the cause or causes of hypertension
presumably lie in the myriad factors that control
these values. While some young untreated hyperten-
sives demonstrate an increased cardiac output in the
initial phase of their disease, in established hyper-
tension an increased peripheral resistance comes to
dominate the haemodynamic picture.1,2 Abnormali-
ties of both vascular structure and function have
been proposed to explain this increased vascular
resistance. The original hypothesis developed by
Folkow3 postulates that a repeated or sustained
functional pressor influence (which may include the
relative under activity of a dilator influence) leads
to structural changes that in turn reinforce the elev-
ation of peripheral resistance. It is now evident that
vascular tone is controlled not only by nervous and
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patho-inhibitory and vagotonic effects, acting by both
central and peripheral mechanisms. Sympathetic over-
activity, coupled with the permissive role of a depressed
level of baroreflex mediated cardiac vagal control, may
play a significant role in the genesis of human hyperten-
sion. Early work in hypertensive rats suggests that
neuronal NO production is impaired at a number of key
central sites concerned with autonomic cardiovascular
regulation. This data is consistent with the pattern of
autonomic dysfunction observed in human hyperten-
sion. The possibility that neuronal rather than endo-
thelial production of NO might play a significant role in
the aetiology of essential hypertension is a promising
area for future human research.
Journal of Human Hypertension (2001) 15, 219–227

hormonal influences but also by locally active fac-
tors produced by the endothelium. Arguably the
most important these is nitric oxide (NO), whose
role as a tonically active vasodilator is now firmly
established. Not surprisingly there has been intense
interest in the possible role of under activity of the
endothelial NO pathway as the causal ‘functional
pressor influence’ leading to establishment of elev-
ated vascular resistance in hypertension.

The autonomic nervous system is another
important homeostatic mechanism in the regulation
of arterial pressure which also appears to be under
the control of nitric oxide. Elevated levels of sym-
pathetic nervous activity may contribute to the
development and/or maintenance of hypertension
by a number of interacting mechanisms related to
effects on the heart, vessels and kidneys (Figure 1).
Sympathetic over-activity has been most clearly
demonstrated in early hypertension4–10 but
increased muscle sympathetic nerve activity is also
present in older patients with established hyperten-
sion.11,12 Excess sympathetic drive is also likely to
play an important role in hypertension associated
with obesity and the insulin resistance syndrome.13–15

Impairment of baroreflex mediated vagal responses
may also constitute an important permissive factor
in the development and maintenance of hyperten-
sion. This may be mediated not only by the direct
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Figure 1 Mechanisms mediating the pressor effect of increased sympathetic activity.

cardio-inhibitory effects of vagal activity but also by
its ability to block sympathetic signal transduction,
the so-called ‘indirect vagal’ effect. In the neural
pathways of both limbs of the autonomic nervous
system there is increasing evidence that neuronally
synthesised NO has an important modulatory role.
It is possible that abnormalities of the NO pathway
within the autonomic nervous system may be equ-
ally or more important in the pathophysiology of
hypertension than those of the endothelium. This
review will examine the role of endothelial and neu-
ronal NO in hypertension and explore the possi-
bility that the neural influences of NO could contrib-
ute to the autonomic dysfunction of essential
hypertension and possibly to the genesis of the dis-
ease itself.

Endothelial NO and hypertension
Nitric oxide is generated from its precursor L-argi-
nine by nitric oxide synthase (NOS). There are three
isoforms of the enzyme; the two constitutive forms,
endothelial and neuronal NOS (eNOS and nNOS)
and the inducible isoform originally described in
immune cells (iNOS). Nitric oxide effects its prin-
ciple biological actions, including that of vascular
smooth muscle relaxation, via soluble guanylate
cyclase and production of the second messenger c-
GMP. The actions of endogenously produced NO

can be studied by examining the effects of NOS
inhibition using analogues of L-arginine such as NG-
monomethyl-L-arginine (L-NMMA), NG-nitro-L-
arginine (L-NNA) and its methyl ester (L-NAME).
Inhibition of NOS results in vasoconstriction and a
rise in systemic blood pressure in animals16–22 and
man,23–27 indicating that resistance vessels are under
a tonic vasodilator influence from NO. It is now
accepted that the vascular endothelium generates
NO via constitutively active eNOS, both under basal
conditions and in response to pharmacological
(muscarinic agonists) or mechanical stimuli (shear
stress related to blood flow). Attenuated vascular
NO activity, whether basal or stimulated, might be
hypothesised to lead to a relative increase in vascu-
lar resistance that is seen in established hyperten-
sives. This is supported by the recent finding that
mice with targeted disruption of the eNOS gene
are hypertensive.28

A number of studies have examined both basal
and stimulated vascular NO release in human
hypertensive populations. Basal production of vas-
cular NO, assessed by quantification of the vasocon-
strictor responses to NOS inhibitors, has been
shown to be impaired in human hypertensive sub-
jects.29,30 Stimulated vascular NO release
(endothelial function) has also been shown to be
impaired by several investigators. They demon-
strated attenuated responses to endothelium depen-



Nitric oxide and hypertension
S Chowdhary and JN Townend

221dent vasodilators such as acetylcholine but pre-
served responses to endothelium independent
vasodilators such as sodium nitroprusside in hyper-
tensive patients31,32 and even in their normotensive
offspring.33 However, not all human trials have con-
firmed these abnormalities of vascular NO bioactiv-
ity in hypertension. Cockroft et al

34 studied endo-
thelial function in a larger population of essential
hypertensives than previous trials and found vaso-
dilator responses to muscarinic agonists and
nitroprusside to be similar to those in normotensive
controls. The same group have also recently shown
that basal vascular production of NO is preserved in
hypertension.35 These apparent inconsistencies
have led to the suggestion that the abnormalities of
vascular NO generation/activity found in hyperten-
sion may be a result of the increased blood pressure
rather than its cause. Not only do the abnormalities
of basal NO production correct with normalisation
of blood pressure in hypertensive subjects36,37 but
endothelium dependent dilatation is immediately
impaired by acute elevation of blood pressure in
healthy volunteers.38

We therefore lack a clear consensus on whether
vascular NO generation is impaired in human
hypertension and, if so, whether this represents a
cause or effect. It is likely that abnormal NO gener-
ation in hypertension is not confined solely to the
endothelium. Studies using radio-labelled L-argi-
nine have shown a reduction in total body NO pro-
duction in human hypertension.39 The possibility
therefore exists that a relative lack of NO activity
elsewhere in the body may contribute to the patho-
genesis of hypertension.

Neural NO and hypertension
Neuronal NOS has been demonstrated in discrete
neuronal populations localised within central
nuclei and peripheral autonomic pathways con-
cerned with the regulation of cardiovascular
activity.40 Accumulating evidence now strongly sug-
gests that the NO generated at these sites plays an
important role in the regulation of blood pressure
acting as a neuromodulator influencing both sym-
pathetic and parasympathetic cardiovascular regu-
lation.

Nitrergic modulation of sympathetic nervous
activity

There is substantial evidence to suggest that NO
inhibits cardiac and vascular sympathetic activity
both centrally and peripherally. A significant
component of the hypertensive response to systemic
NOS inhibition may be effected not only by removal
of the tonic vasodilator influence of endothelial NO
generation but also through sympathetically
mediated vasoconstriction. Sympathectomised ani-
mals show a greatly attenuated hypertensive
response to chronic NOS inhibition41 and the hyper-
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tension induced by acute NOS inhibition can be
reversed by suppression of central sympathetic out-
flow.42 In addition, acute sympathetic ganglion
blockade22,41,43 and acute beta blockade22 cause a
significantly greater fall in blood pressure during
chronic NOS inhibition than that seen in control
animals suggesting enhanced levels of sympathetic
vasoconstrictor activity.

Several investigators have shown an increase in
sympathetic nerve activity during systemic NOS
inhibition suggesting that endogenous NO causes a
tonic inhibition of basal sympathetic activity. In
anaesthetised rats, a biphasic response in renal sym-
pathetic nerve activity (RSNA) occurred in response
to systemic L-NMMA.44 Following the initial
decrease in RSNA ascribed to baroreflex mediated
sympathetic inhibition, there was a sustained
increase despite the persistent rise in blood press-
ure. This increase in activity was abolished by cervi-
cal spinal transection suggesting a central action of
NO in the inhibition of sympathetic outflow. Pre-
treatment with L-arginine prevented the late
increase in RSNA suggesting that the potentiating
effects of L-NMMA on sympathetic activity were
due specifically to inhibition of NO synthesis. Other
investigators have also shown increases in renal45

and cardiac sympathetic nerve activity46 during sys-
temic NOS inhibition when baroreflex activation
was prevented. Conversely, in baroreceptor intact
rabbits, stimulation of NO synthesis with intra-
venous L-arginine caused a decrease in cervical
sympathetic nerve activity and RSNA despite a fall
in blood pressure.47

The use of modulators of the NO pathway which
lack specificity for a particular isoform of NOS and
the systemic route of their administration does not
allow us to determine where NO acts to inhibit sym-
pathetic nerve activity. Nor does it determine which
of the two constitutively expressed isoforms (eNOS
or nNOS) is involved. However, other evidence sug-
gests that both central and peripheral mechanisms
come into play, with an important role for nNOS
and thus neuronal production of NO.

Central effects on basal sympathetic activity

Direct administration of NOS inhibitors into the
brain produces a sympathetically mediated increase
in blood pressure and heart rate as well as a rise in
directly recorded RSNA.48–51 These effects are abol-
ished by cervical spinal cord transection.50 Con-
versely, stimulation of NOS within the brain by
intra-cerebral injection of L-arginine results in a
reduction of arterial pressure and directly recorded
abdominal sympathetic nerve activity.52

There may be several sites at which NO causes
inhibition of central sympathetic processing. The
nucleus tractus solitarius (NTS) is the primary
recipient of afferent baroreceptor fibres entering the
medulla and micro-injection of L-NMMA at this site
results in an increase in arterial pressure and
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RSNA.53,54 NTS neuronal activity was reduced by
systemic injection of L-NAME at constant blood
pressure55 while L-arginine and the NO donor,
sodium nitroprusside (SNP) increased discharge
rate.56 The RVLM, the final site of sympathetic pro-
cessing in the brainstem, also appears to contain
neurons susceptible to an inhibitory influence by
NO.54,57,58 Descending inputs to the medullary
nuclei from the hypothalamus may also be involved.
Studies have shown that NO may be a neuromodul-
ator within the paraventricular nucleus (PVN), a site
important for sympathetic regulation in circulatory
volume homeostasis. Its effect here is once more to
inhibit efferent sympathetic outflow by a mech-
anism that may be related to GABA.59,60

Although there are some contrary results,42,61–63 a
picture emerges of NO acting as a neuromodulator
within sites of central sympathetic neuronal inte-
gration to effect a tonic inhibition of central sym-
pathetic outflow. This mechanism may be important
in limiting sympathetic activation during stress as it
has been observed that the number of NO producing
neurons at key sites of autonomic processing in the
brains of conscious rats increases in response to
experimentally induced stress.64

Some in vivo evidence does exist to suggest that
endogenous NO also results in tonic inhibition of
efferent sympathetic nerve activity in humans. The
systemic infusion of L-NMMA to healthy volunteers
at a dose designed to minimise baroreflex loading
resulted in higher levels of directly recorded muscle
sympathetic nerve activity than an equipressor
doses of phenylephrine, given as a non-NO depen-
dent control vasoconstrictor.26,27

Central effects on reflex sympathetic nerve
activity

The effect of NO on the baroreflex control of sym-
pathetic activity remains unclear. Some studies have
suggested that NO inhibits baroreceptor-RSNA gain,
as evidenced by an increase in reflex gain during
acute systemic NOS inhibition.45,49,61 However, a
number of studies have failed to show any influence
of NO on the reflex control of sympathetic
activity.47,62 This inconsistency is only partially
explained by species differences or the effect of
anaesthetics.

More complex dynamic indices of baroreflex sym-
pathetic control may be influenced by NO. If sus-
tained pressure is applied to the vascularly isolated
rabbit carotid sinus, rapid inhibition of RSNA fol-
lowed by a gradual return towards baseline occurs,
a process known as ‘rapid central adaptation’. The
magnitude and rate at which this adaptation
occurred was increased by intracisternal L-NAME.51

This suggests that endogenous NO may act within
the brainstem to reduce central adaptation, and thus
sustain the reflex inhibition of sympathetic activity
during a rise in arterial pressure.

Modulation of cardiac and vascular responses to
sympathetic stimulation

Cardiac tissue: In addition to controlling levels of
efferent sympathetic activity there is evidence that
NO may also attenuate the end-organ response to
sympathetic stimulation. In experiments on cul-
tured rat myocytes, inhibition of the NO signal
transduction system caused myocytes to show
enhanced inotropic responses to beta-adrenergic
stimulation.65 Conversely, exogenous NO donation
with SNP attenuated both the chronotropic and
inotropic responses to sympathetic nerve stimu-
lation in isolated guinea-pig atria,66 as well as the
inotropic response to isoprenaline in human atrial
and ventricular muscle strips.67 This effect has also
been confirmed in vivo with a significant enhance-
ment by L-NAME of the inotropic effect of intraco-
ronary dobutamine in dogs.68

Cardiac myocytes constitutively express eNOS
and work with cultured cells would suggest that it
is this isoform that generates the NO responsible for
the inhibition of cardiac sympathetic responsive-
ness.65 However the demonstration of increased
heart rate responses to sympathetic nerve stimu-
lation after the administration of selective nNOS
inhibitors in the vagotomised rabbit69 and ferret70

indicate that neurally produced NO may also con-
tribute significantly to this effect in vivo. This may
be due to pre-synaptic inhibition of noradrenaline
release from cardiac sympathetic nerves.71,72 The
recent description of nNOS in the cardiac sarco-
plasmic reticulum73 may mean that this isoform also
contributes to a post-synaptic inhibition of adre-
nergic signal transduction possibly by modulating
intracellular calcium currents.74–76

Not all data on the cardiac effects of NO have been
consistent. Recently some confusion has arisen from
attempts to ratify the results of experiments using
NOS inhibitors with those of exogenous NO donors.
Although not shown in all species,77 the modulation
of beta-adrenergic cardiac responses by exogenous
NO seems to display a concentration dependent bi-
phasic profile. Low concentrations of NO donors
increase contractile responses to electrical nerve
stimulation, whereas higher doses produce a nega-
tive inotropic effect.78,79 The inotropic effect of NO
also appears to depend on the level of background
sympathetic activity since the transition from posi-
tive to negative inotropy is shifted towards a lower
dose of NO donor—and possibly levels of cGMP pro-
duction that are more representative of normal
physiology—by a beta-adrenergic agonist.79 This ties
in well with the findings of the NOS inhibitor
experiments reviewed above, which suggest that the
action of endogenous NO generation is to inhibit,
rather than potentiate, inotropic responses to beta-
adrenergic stimulation. Finally, this paradigm is
also supported by findings that young eNOS knock-
out mice (prior to the development of ventricular
hypertrophy) also display enhanced inotropic
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see Balligand80).

Vascular tissue: Modulation of central sympath-
etic activity cannot explain vasoconstrictor
responses to localised intra-arterial administration
of NOS inhibitors in human experiments, with the
removal of the direct vasodilator influence of endo-
thelial NO believed to be solely responsible.16 How-
ever, peripheral neurogenic mechanisms could also
contribute to this effect since NO may attenuate the
vasoconstrictor response to basal sympathetic nerve
activity. In vitro, NOS inhibition enhanced vasocon-
strictor responses to both noradrenaline and sym-
pathetic nerve stimulation,81 whilst NO resulted in
attenuation of the constrictor effects of sympathetic
nerve stimulation.82 These actions may reflect a non-
specific dilator influence of NO, however a specific
pre-synaptic inhibitory influence of NO on sympath-
etic vasoconstriction has been demonstrated.
Exogenous NO reduced the efflux of radiolabelled
noradrenaline in response to nerve stimulation of
canine pulmonary vessels83 and mesenteric artery.84

Also a specific post-junctional interaction between
NO and noradrenaline was suggested by the finding
that L-NAME enhanced vasoconstrictor responses to
noradrenaline much more than responses to angio-
tensin II.42

Nitrergic modulation of vagal cardiac
control
Impairment of cardiac vagal action in hypertension
may be an important mechanism underlying the
abnormalities of baroreflex function seen in estab-
lished hypertension. Additionally, cardiac vagal
innervation represents an important sympatho-
inhibitory mechanism. There is good evidence that
NO increases activity in brainstem sites that pro-
mote efferent vagal activity, and also enhances car-
diac responses to vagal stimulation.

The stimulation by NO of neuronal activity within
the NTS discussed above provides a possible mech-
anism by which central vagal activity might be
increased by NO as the NTS provides excitatory
inputs to vagal motonuclei in the medulla. Further
evidence of a central vagotonic effect of NO is pro-
vided by recordings of motoneuron activity within
the dorsal motor nucleus of the vagus (DMV). Here
direct application of NO donors and L-arginine
increased firing rate whilst application of a NOS
inhibitor decreased firing rate.85

An important role for NO in the peripheral control
of vagal activity is also evident. The bradycardic
response to muscarinic stimulation in vitro was
partially blocked by inhibitors of the NO-cGMP
pathway.65 In the ferret, inhibition of NOS activity
by L-NMMA attenuated the bradycardic response to
efferent vagus nerve stimulation, an effect that was
reversed by L-arginine.86,87 Notably this effect was
reproduced by a specific nNOS inhibitor.88
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Conversely, NO donors significantly enhanced the
bradycardic response to vagal stimulation, in rab-
bits.89

Aside from its direct cardio-inhibitory effects the
vagus also exerts a powerful regulatory influence
through inhibition of beta-adrenergic responses; this
has been termed ‘indirect’ cardiac vagal activity or
‘accentuated antagonism’. Muscarinic receptor
stimulation was thought to effect this interaction lar-
gely due to inhibition of adenyl cyclase via an
inhibitory G protein. However, there is now good
evidence that this action may also be mediated by
the NO-cGMP pathway. In vitro, inhibition of the
NO-cGMP pathway has been shown to significantly
reduce muscarinic attenuation of adrenergic
increases in both contractility90 and heart rate.91

In

vivo, intracoronary L-NMMA attenuated the inhibi-
tory action of vagal stimulation on the inotropic
responses to dobutamine in closed chest dogs.92

Nitric oxide also appears to have a cardiac vago-
tonic influence in humans. In a recent study in heal-
thy human subjects, heart rate variability was used
to study the modulatory influence of NO on cardiac
vagal control. It was observed that although L-
NMMA and phenylephrine (administered as a non-
NO-dependent control vasoconstrictor) caused
equal rises in blood pressure, there was significantly
less baroreflex mediated increase in cardiac vagal
activity with the NOS inhibitor than with phenyl-
ephrine. Conversely, during hypotension resulting
from the NO donor sodium nitroprusside, there was
relative preservation of indices of vagal activity
compared to those produced by an equal fall in
blood pressure with the non-NO dependent vaso-
dilator, hydralazine.93

Activity of the neural NO pathway in
hypertension
The accumulating data strongly suggest a significant
role for NO as a neuromodulator of cardiovascular
autonomic activity in normal physiology. In patho-
logical states such as hypertension there may be
abnormalities of neuronal NO pathway activity at
important cardiovascular regulatory sites. Studies of
localised 3H-citrulline formation, a by-product of
NOS in the formation of NO from L-arginine, have
suggested that nNOS activity is reduced in the dor-
sal brainstem of spontaneously hypertensive rats.94

Furthermore, intracerebroventricular (ICV) injection
of inhibitors of NOS and c-GMP resulted in a smaller
pressor response in spontaneously hypertensive rats
than in normotensive control animals. Similarly, sti-
mulating brain NOS by ICV injection of calcium (a
required cofactor of constitutive NOS) resulted in an
attenuated blood pressure response in the hyperten-
sive animals. The fall in arterial pressure seen with
ICV administration of NO in hypertensive animals
was not only preserved but was significantly
enhanced.95 This evidence suggests that genetically
hypertensive rats have reduced levels of basal and
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stimulated functional nNOS activity in central sites
concerned with the autonomic regulation of blood
pressure.

Experimental models of secondary hypertension
(eg, renal-clip and mineralocorticoid induced) have
also shown reduced expression of nNOS mRNA in
sites concerned with central sympathetic regulation
such as the hypothalamus96,97 and the RVLM.97

Hypothalamic nuclei such as the paraventricular
nucleus (PVN) are particularly concerned with the
autonomic regulation of circulating volume and
abnormalities of nNOS gene expression in these
areas may be linked to salt-sensitive hypertension.
In normotensive rats, salt loading enhances nNOS
gene expression in the PVN and other hypothalamic
nuclei. Rats with salt-sensitive hypertension have
decreased hypothalamic nNOS mRNA expression.98

It may be postulated that this may limit their ability
to reduce sympathetic outflow to the cardiovascular
system and the kidney during salt loading. A further
site of action of nNOS in the prevention of salt-
sensitive hypertension may within the kidney itself.
The enzyme is highly expressed in numerous sec-
tions of tubular epithelium and in particular in the
macula densa where it may play a role in the regu-
lation of renal sodium handling. Nitric oxide gener-
ation in the kidney appears to promote sodium
excretion, a role that is in keeping with observations
that Dahl salt-sensitive rats made hypertensive by a
high salt diet exhibit impaired renal nNOS activity
(for review see Kone and Baylis99).

If, as the evidence suggests, neural NO is a sympa-
tholytic and vagotonic agent then the reduced levels
of this neuromodulator seen in brains of hyperten-
sive animals may bear a causal relationship, or at
least be a significant contributor to, the sympathetic
over activity and vagal withdrawal observed in this
disease state. The role of neuronal NO in the aeti-
ology of hypertension does not seem to be supported
by data from nNOS knockout mice who, unlike their
eNOS knockout counterparts, do not develop hyper-
tension.100 However, negative findings such as these
in gene knockout animal models must be interpreted
with caution. These animals have been deficient in
the relevant enzyme throughout embryonic and
post-natal development leading to both structural
adaptations and the development of compensatory
pathways, hence it cannot be inferred that no role
is played by the relevant enzyme in the intact ani-
mal. It is possible for example that nNOS knockout
mice may not suffer hypertension due to compensa-
tory increases in eNOS. Furthermore, although these
animals display impairment of basal cardiac para-
sympathetic activity, the observation that they do
not show evidence of increased sympathetic activity
may also help to explain the lack of ensuing hyper-
tension.100 Presumably, this is also the result of com-
pensatory adaptive mechanisms as it is at odds with
the findings of central pharmacological NOS
inhibition50).

Conclusions
Impairment of endothelial NO activity has been
documented in primary hypertension. Expectations
that this might be a key factor in the increased vas-
cular tone that characterises established hyperten-
sion have been marred by evidence suggesting that
impaired endothelial NO production appears to be
a secondary effect rather than the primary cause of
elevated arterial pressure. Animal and human evi-
dence shows that neurally produced NO can also
regulate haemodynamic control through modulation
of cardiovascular autonomic activity. Central and
peripheral effects on both sympathetic and vagal
control have been demonstrated.

There is preliminary evidence to suggest that neu-
ronal NO production may be reduced in hyperten-
sion, and this finding is certainly consistent with the
observed pattern of sympathetic over activity and
vagal impairment. Sympathetic hyperactivity in
particular may represent an important trigger in the
cascade of compensatory mechanisms which
eventually lead to established hypertension. Thus
the possible role of NO in the genesis of hyperten-
sion might not be confined merely to its direct
actions on vascular tone but may also involve
powerful modulatory effects on cardiovascular auto-
nomic control. Our knowledge of the defects of neu-
ral NO pathways in hypertension is currently con-
fined to rat models and further research in this area
is required. In particular the role of neronal NO in
human hypertension remains unaddressed. The use
of specific inhibitors of nNOS in humans could
allow future examination of this important question.
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