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Abstract: Proton-pump inhibitors (PPI), e.g., omeprazole or pantoprazole, are the most widely used
drugs for various gastrointestinal diseases. However, more and more side effects, especially an
increased risk of infections, have been reported in recent years. The underlying mechanism has still
not yet been fully uncovered. Hence, in this study, we analyzed the T cell response after treatment
with pantoprazole in vitro. Pantoprazole preincubation reduced the production and secretion of
interferon (IFN)-γ and interleukin (IL)-2 after the T cells were activated with phytohemagglutinin
(PHA)-L or toxic shock syndrome toxin-1 (TSST-1). Moreover, a lower zinc concentration in the
cytoplasm and a higher concentration in the lysosomes were observed in the pantoprazole-treated
group compared to the untreated group. We also tested the expression of the zinc transporter Zrt- and
Irt-like protein (Zip)8, which is located in the lysosomal membrane and plays a key role in regulating
intracellular zinc distribution after T cell activation. Pantoprazole reduced the expression of Zip8.
Furthermore, we measured the expression of cAMP-responsive element modulator (CREM) α, which
directly suppresses the expression of IL-2, and the expression of the phosphorylated cAMP response
element-binding protein (pCREB), which can promote the expression of IFN-γ. The expression
of CREMα was dramatically increased, and different isoforms appeared, whereas the expression
of pCREB was downregulated after the T cells were treated with pantoprazole. In conclusion,
pantoprazole downregulates IFN-γ and IL-2 expression by regulating the expression of Zip8 and
pCREB or CREMα, respectively.
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1. Introduction

Proton-pump inhibitors (PPIs) are widely used in the treatment of various gastroin-
testinal diseases such as peptic ulcer, gastroesophageal reflux disease, Zollinger–Ellison
syndrome, and upper gastrointestinal bleeding [1,2]. Pantoprazole and omeprazole are most
commonly used in medical treatment at the moment. PPIs covalently bind to the acid pump
enzyme H+ /K+-ATPase and they irreversibly inactivate it [3]. By acting on the final step of
gastric acid secretion, these drugs effectively inhibit gastric acid secretion regardless of the
presence of other factors. However, more and more side effects have been reported in recent
years [2,4,5], especially their suppressive effect on the immune system [6–8]. Meanwhile,
in vivo and in vitro experiments have demonstrated that the status of intracellular free zinc
has an important regulatory influence on the human immune system [9–12].

Even though there are no reliable biomarkers to accurately screen the status of zinc
in vivo, it has been widely accepted for years that the status of free zinc of lysosomes and
cytoplasm can be assessed using FluoZin-3 AM and Zinpyr-1 staining, respectively [13,14].
Using these two different staining techniques, the distribution of intracellular zinc under
different conditions can be studied.

Zip8 is important for the maintenance of intracellular zinc homeostasis in different cell
types [15,16]. A 20–25-fold increase in mRNA levels after T cell activation [17,18] makes

Int. J. Mol. Sci. 2023, 24, 1191. https://doi.org/10.3390/ijms24021191 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24021191
https://doi.org/10.3390/ijms24021191
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-5658-2893
https://doi.org/10.3390/ijms24021191
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24021191?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 1191 2 of 11

it an important factor in the post-activation response of T cells. The knockdown of Zip8
by siRNA decreases IFN-γ production, and conversely, an increased expression of Zip8
increases the expression of IFN-γ [18,19].

Zinc is an essential cofactor for T cell generation, maturation, differentiation, and prolif-
eration [20,21]. Zinc deficiency leads to thymic atrophy and decreased thymulin production,
resulting in decreased T cell proliferation and increased apoptosis. The expression of the anti-
apoptotic factor B cell lymphoma-2 is reduced, and caspase activity is increased during zinc
deficiency, leading to a decrease in the number of immature CD4/CD8 double-positive T cells [20].

In addition, in zinc deficiency, the expression and secretion of different cytokines after
T cell activation is altered. Recent studies by our group have shown that zinc deficiency
leads to reduced IL-2 transcription and secretion by increasing the expression of CREMα,
a negative regulator of IL-2 transcription [11]. In zinc-deficient elderly patients, zinc
supplementation reverses the negative effect of zinc deficiency, leading to low CREMα

expression and thus normal IL-2 transcription [22].
In addition, IFN-γ expression is altered in different zinc conditions. It was shown

that a high concentration of cytoplasm-free zinc reduces the activity of the phosphatase
calcineurin (CN), thereby sustaining the phosphorylation of the transcription factor CREB,
which in turn increases IFN-γ expression [18].

The aim of the study was to elucidate the immunosuppressive effect of PPIs and their
effect on zinc homeostasis. We hypothesized that PPIs alter zinc homeostasis and thereby
affects cytokine expression.

2. Results
2.1. Effect of PPI on Cytokine Production

To investigate the immunosuppressive effect of PPIs, we examined cytokine produc-
tion after T cell activation. IFN-γ is an indicator of T helper cell 1 activation and is essential
for immunity against intracellular pathogens and tumors [23], and IL-2 is important for T
cell proliferation and differentiation [18,24,25]. We preincubated peripheral blood mononu-
clear cells (PBMCs) with 75 µM pantoprazole, one kind of PPI, for 48 h and then stimulated
the cells with 1 µg/mL PHA or 50 ng/mL TSST for 24 h or 48 h. An at least 2-fold de-
crease in both IFN-γ (Figure 1A–D) and IL-2 (Figure 1E–H) expression was observed in the
PPI-treated group after stimulation with PHA or TSST, with the largest decrease of almost
13-fold after 24 h of TSST stimulation (Figure 1G).
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for 48 h (gray bars) or left untreated (black bars). Samples were then either stimulated with 1 µg/mL
PHA (A,B,E,F) or 50 ng/mL TSST (C,D,G,H) or were left untreated for 24 h or 48 h, as indicated.
The IFN-γ and IL-2 production was measured by ELISA. Experiments were performed n = 3–4 times.
Results are presented as mean values ± SEM. * p ≤ 0.05, ** p ≤ 0.01 (Student’s t-test).

2.2. Effect of PPIs on the Distribution of Intracellular-Free Zinc

It was previously shown that IFN-γ and IL-2 expression are regulated by intracellular
zinc [9,11,18,22]; thus, we next examined the distribution of intracellular-free zinc in PPI-
treated PBMC. The lysosome-free zinc concentration was determined by FluoZin-3 AM, and
the cytoplasm-free zinc concentration was determined by Zinpyr-1 staining. In the PBMC,
after being treated with PPI, a time-dependent increase in lysosome-free zinc (Figure 2A,C)
and a decrease in cytoplasm-free zinc (Figure 2B,D) were observed. These results suggested
that PPIs may cause a shift in the distribution of intracellular zinc.
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Figure 2. Influence of PPIs on the distribution of intracellular free zinc. A total of 1 × 106 PBMC
were cultured in 1 mL medium in a 24-well plate preincubated with the proton-pump inhibitor
(PPI) pantoprazole (75 µM) (gray bars) or left untreated (black bars) for 24 h (A,B) or 48 h (C,D).
Lysosome-free zinc concentration (A,C) was determined by FluoZin-3 AM, and cytoplasm-free zinc
concentration (B,D) was measured using Zinpyr-1 for staining (n = 9–11). Results are presented as
mean values ± SEM. * p ≤ 0.05 (Student’s t-test).

2.3. The Influence of PPIs on the Expression of Zip8

In the following experiment, we investigated the redistribution of intracellular zinc
after PPI treatment. Zip8 is located in the lysosomal membrane, and it transports zinc
from the lysosome into the cytoplasm and has been shown to be important in IFN-γ
expression [18]. Thus, we investigated the expression of Zip8 in the PBMCs in the control
and the PPI-treated group by Western blot analysis. A significant decrease in the expression
of Zip8 was observed after 24 h (Figure 3A,B) and 48 h (Figure 3A,C) of treatment with PPIs.
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Figure 3. Influence of PPIs on the expression of Zip8. A total of 2 × 106 PBMC/mL were incubated
with the proton-pump inhibitor (PPI) pantoprazole (75 µM, gray bars) for 24 h (B) or 48 h (C) or left
untreated (black bars), respectively. The expression of Zip8 was quantified by Western blot analysis.
(A) One representative experiment out of n = 6–7 independent experiments is displayed. Results are
presented as mean values ± SEM. * p ≤ 0.05, ** p ≤ 0.01 (Student’s t-test).

2.4. PPI Treatment Increased the Number of CREM Isoform

In order to investigate the reduced expression of IL-2 in the PPI-treated PBMC,
we examined CREMα, which has been shown to inhibit IL-2 transcription in zinc defi-
ciency [11,22]. The human CREM gene consists of 20 exons [26,27], and alternative splicing
results in many different isoforms that have different, even opposite, effects on target gene
expression. After PBMCs were treated with pantoprazole, the expression of CREMα was
investigated by Western blot analysis. Preincubation of the PBMCs with pantoprazole
upregulated the expression of total CREM (Figure 4A–C) and shifted the present isoforms
of CREM (Figure 4D–I). The expression of CREM at 45 kD was downregulated, whereas at
80 kD and 100 kD it was upregulated. These results suggested that PPIs upregulate CREM
and thereby negatively regulate IL-2 transcription.
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or left untreated (black bars), respectively. The expression of CREMα was quantified by Western
blot analysis. β-actin is the same as in Figure 3. (A) One representative experiment out of n = 6–7
independent experiments is displayed. Results are presented as mean values ± SEM. * p ≤ 0.05,
** p ≤ 0.01 (Student’s t-test).

2.5. The Influence of PPIs on the Expression of pCREB

To investigate the inhibitory effect of PPIs on the secretion of IFN-γ, we examined
the transcription factor pCREB, which is highly expressed under high zinc concentrations
and induces IFN-γ transcription [18]. The density of pCREB in the PBMCs after being
treated with pantoprazole for 24 h (Figure 5A,B) or 48 h (Figure 5A,C) decreased in a
time-dependent manner when compared to the control group. These results suggested that
PPIs reduce IFN-γ expression by downregulating pCREB.
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3. Discussion

PPIs are widely and even excessively used in gastrointestinal diseases [1,2]. In recent
years, more and more side effects [2,4,8], especially a high rate of infection in patients [6–8],
have been reported. PPIs have been suspected to be associated with different infections.
In fact, Clostridium difficile infection (CDI) is the most common infection observed in PPI
users [28]. In recent years, many studies and meta-analyses have revealed an associa-
tion between PPI treatment and CDI [28,29]. This high infection rate is attributed to the
higher transgastrointestinal resistance of the ingested spores and the alteration of the mi-
crobiota. In addition to CDI, many other infections such as Salmonella, Campylobacter, and
community-acquired pneumonia occur but cannot be explained solely by the mechanisms
just mentioned. A study from our laboratory also found that PPI treatment increases the
risk of infection in patients undergoing cardiac surgery [6]. We also found that in vitro
and in vivo pantoprazole treatment reduces the production of different pro-inflammatory
cytokines and the function of polymorphonuclear cells. Therefore, a better understand-
ing of the mechanisms of PPI-induced immunosuppression may contribute to a better
understanding of PPI side effects.

The first step of this work was to confirm the inhibitory effect of PPIs on PBMCs.
Therefore, we stimulated PPI-treated and untreated PBMCs with PHA [18,30] and TSST [31],
respectively. PHA is a natural lectin that binds to sugars on glycosylated surface proteins
and crosslinks the T cell receptor, causing cytokine release [32,33]. TSST is a bacterial
superantigen that binds directly to the Vβ region of the T cell receptor and connects the
TCR to the MHC protein, independent of a specific antigen [31]. This activates T cells
non-specifically and triggers a cytokine storm [34].



Int. J. Mol. Sci. 2023, 24, 1191 6 of 11

For both T cell activation models, we found a reduced cytokine release in the PPI-
treated cells. Interestingly, previous work showed that TSST-induced cytokine release
is not sensitive to high zinc concentrations [31]. However, our results showed that the
TSST-stimulated cells were sensitive to PPI treatment and thus to a zinc-deficient state,
suggesting that a physiological zinc concentration is an important prerequisite for the
activation of T cells by TSST.

Contrary to our results, it has also been reported that high zinc concentrations inhibit
the production of IL-2 [35] expression, but we believe that there can be several explanations
for this, for example, different experimental conditions and zinc concentrations.

Intracellular free zinc is necessary for different types of cells to perform their corre-
sponding functions [36,37], especially in naive and mature T cells [20,21,38]. Therefore, we
next tested the intracellular zinc distribution status after PPI treatment. A time-dependent
decrease in cytoplasm-free zinc and an increase in intra-lysosomal-free zinc in the PPI-
treated group was found when compared to the control group. We found that cytoplasm-
free zinc was increased 24 h after PPI treatment, but it decreased after 48 h. However, not
only did the cytoplasm-free zinc concentration in the PPI-treated group change but that in
the untreated control group also gradually increased from 24 to 48 h.

We think that the gradual increase in cytoplasm-free zinc in the control group may
have been a mild response to the in vitro environment and this response may have been
due to the zinc transporter located on the cell membrane or the release of intracellular
zinc bound to metallothioneins (MT). Still, this shifted intracellular zinc distribution could
explain why the PPI-treated group produced lower amounts of cytokines after PHA or
TSST stimulation.

To investigate the molecular mechanism of shifted intracellular-free zinc redistribution
after PPI treatment, we measured the expression of Zip8, a membrane zinc transporter
localized in the lysosomal membrane [39]. Zip8 is the most important zinc transporter
that transports free zinc from the lysosome to the cytoplasm. When T cells were activated,
Zip8 expression increased 20–25 fold, making it the strongest response, followed by Zip3
and Zip14 [18]. We found a time-dependent decrease in Zip8 expression in the PPI-treated
group when compared to the control group. A previous study showed that the knockdown
of Zip8 with siRNA reduced IFN-γ expression and secretion. In contrast, overexpression of
Zip8 had the opposite effect, expressing and secreting more IFN-γ [18]. In our experiment,
we did not measure other zinc transporters, but interestingly, we found that the reduction
in cytokine secretion could not be reversed through zinc supplementation, both before and
after PPI treatment (Liu et al. Institute of Immunology, RWTH Aachen University, Aachen,
Germany, ELISA measurement). These results implied that intra-lysosomal zinc, but not
extracellular free zinc, had a critical role in cytokine release.

The inhibition of cytokine production by the elevated expression of CREMα caused
by a reduced intracellular zinc concentration was first proposed by our laboratory [11].
CREMα is expressed in most immune cells and is encoded into many different protein
isoforms that have a wide range of effects on multiple signaling pathways and organ func-
tions through post-transcriptional modifications [40,41]. For example, CREMα was found
to play a key role as an epigenetic and transcriptional regulator in T lymphocytes [42]. A
number of important selective splicing events occurred in the PPI-treated group compared
to the untreated group. Although we did not investigate the specific role of these protein
isoforms, we assumed that this alteration in regulatory protein isoforms was associated
with altered cytokine secretion. Of course, more experiments are needed if we want to
fully understand the PPI-induced changes in CREMα protein isoforms and their effects on
cytokine production.

The phosphorylation status of CREB that is affected by intracellular zinc status [43] can
be explained by the zinc-sensitive catalytic enzyme calcineurin (CN) [44], which promotes
CREB dephosphorylation [45]. It has been shown that the activity of CN is inhibited at
high zinc concentrations of 0.8–25 µM [18], resulting in an increase in pCREB and thus a
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higher IFN-γ transcription. This is consistent with our observation that in a zinc-deficient
state less pCREB and less IFN-γ is expressed.

In this study, we focused on the zinc signaling pathway that is influenced by PPIs in
immune cells. There might be some other ways that are involved in the immunosuppressive
effect of PPIs. Therefore, more research on this topic is necessary.

In conclusion, the shifted distribution of intracellular free zinc was the result of the
suppression of Zip8 in the PPI-treated PBMCs. The low cytoplasm-free zinc concentration
led to a differential expression of CREMα isoforms and a reduced expression of pCREB,
which ultimately resulted in the downregulation of IL-2 and IFN- γ (Figure 6).
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Figure 6. PPIs suppress T cell response by shifting intracellular zinc distribution. Proton-pump
inhibitors (PPI) decrease the expression of Zip8, and thus lower the cytoplasm-free zinc concentration.
This leads to the overexpression of the transcription factor CREMα and low expression of the
transcription factor pCREB in peripheral blood lymphocytes. CREMα is a negative regulator of the
IL-2 gene, and its overexpression dramatically limits adequate IL-2 production. pCREB is a positive
regulator of the IFN-γ gene, and its low expression dramatically limits adequate IFN-γ production.

4. Materials and Methods
4.1. Isolation of Human PBMC

Blood was obtained via venipuncture from healthy young volunteers with informed
consent and ethics committee approval (RWTH Aachen University Hospital, document
No. EK023/05). PBMCs were separated by Ficoll gradient centrifugation as described by
our group [46]. In short, peripheral whole blood was diluted 1:2 with PBS (Sigma-Aldrich,
Steinheim, Germany) and then put gently onto Ficoll. After centrifugation, cells in the
interphase were collected and washed in PBS. In between, red blood cells were lysed with
distilled water. Cells were resuspended in RPMI 1640 medium (Sigma-Aldrich, Germany)
supplemented with 10% heat-inactivated fetal calf serum (FCS) (Bio&Sell, Nuremberg, Ger-
many), 2 mM L-glutamine, 100 U/mL potassium penicillin, and 100 ug/mL streptomycin
sulfate (all from Sigma-Aldrich). Cells were adjusted to concentrations indicated in the
specific assays.
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4.2. Cell Culture and PPI-Treated Models

The isolated human PBMCs were incubated at 37 ◦C in a humidified 5% CO2 atmo-
sphere with or without pantoprazole in a final concentration of 75 µM and incubated for
24 h or 48 h. After the incubation with pantoprazole, PBMCs were collected to measure
intracellular zinc concentration and the expression of Zip8, CREMα, and pCREB. After 48 h
of incubation with pantoprazole, PBMCs were additionally activated with 1 µg/mL PHA-L
or 50 ng/mL TSST for 24 h and 48 h. After 24 h or 48 h, the supernatants were collected to
measure the expression of IFN-γ and IL-2.

4.3. Flow Cytometric Measurement of Intracellular Free Zn2+ with FluoZin-3 AM and Zinpyr-1

Isolated human PBMCs were incubated, as described before, with or without preincu-
bation with pantoprazole. A total of 1 × 106 cells per sample were incubated in 1 mL PBS
for 30 min either with 1 µM FluoZin-3 AM (Invitrogen, Darmstadt, Germany) or 10 µM
Zinpyr-1 (Chemodex, St. Gallen, SG, Switzerland) at 37◦C in the dark. Afterward, cells
were washed with 2 mL PBS and resuspended with 900 µL PBS. Samples were divided
into 3 tubes. Tubes were incubated for 10 min at 37 ◦C with either TPEN (50 µM) to obtain
minimal fluorescence, with ZnSO4/pyrithione (100 µM/5 µM) (all Sigma-Aldrich, Ger-
many) to obtain maximal fluorescence, or were left untreated. Subsequent flow cytometry
measurements were performed using FACSCalibur (BD, New Jersey, USA) and gated for
analysis. Calculation of intracellular labile zinc was performed as described before using a
dissociation constant, KD, of 8.9 nM for the FluoZin-3/Zn2+ complex and a KD of 0.7 nM
for the Zinpyr-1/Zn2+ complex.

4.4. IFN-γ and IL-2 Quantification

Supernatants for IFN-γ and IL-2 determination were harvested from 1 × 106 cells/mL.
After activating the PBMCs as described above, supernatants were collected and stored
at −20 ◦C until measurement. IFN-γ and IL-2 protein concentrations in the supernatants
of the PPI-treated or untreated PBMCs were determined by OptEIA ELISA assay (BD,
Germany) according to the manufacturer’s instructions with a detection limit of 4.7 pg/mL
and 7.8 pg/mL, respectively. Only the incubation times of the standard and samples were
adjusted to 2 h, and the incubation time of the IL-2 detection antibody was adjusted to
1 h; the incubation times of streptavidin–horse radish peroxidase (HRP) conjugate and
subsequent substrate solution were adjusted to 18 min and 20 min, respectively. Results
were measured by a Spark microplate reader (Tecan, Crailsheim, Germany).

4.5. Western Blot

Analysis of the following antibodies was conducted: Zip8 (protein tech), CREM C-2
(Santa Cruz Biotechnology, Germany), and pCREB (cell signaling). A total of 2 × 106 isolated
PBMCs were preincubated with pantoprazole or left untreated for two days and then were
immediately prepared for Western blot analysis. For preparing the cells for Western blot
analysis, cells were collected, centrifuged, and washed with 1 mL PBS. After that, the cells
were resuspended in 100 µL lysis buffer (65 mM Tris–HCl [pH 6.8], 2% [w/v] SDS, 1 mM
sodium orthovanadate, 26% [v/v] glycerol, 1% [v/v] β-mercaptoethanol, and 0.01% [w/v]
bromphenol blue). A Vibra Cell sonicator (Sonics & Materials, Newtown, CT, USA) was
used to lyse the cells. The lysed cells were heated for 5 min at 95 ◦C. A total of 30 µL of
samples per lane was separated at 90 V for half an hour and then at 170 V at the end on
10% polyacrylamide gels for all antibodies used. Samples were blotted onto nitrocellulose
membranes with a pore size of 0.45 µM at 300 mA for 1 h (GE Health-care Life Sciences,
Boston, MA, USA). Then, membranes were blocked for 1 h in TBS-T (20 mM Tris [pH 7.6],
137 mM NaCl, and 0.1% [v/v] Tween 20) + 5% fat-free dry milk and washed in TBS-T
afterwards. Subsequently, the membranes were incubated with the respective primary
antibody overnight at 4 ◦C (CREM C2: 1/500 dilution in TBS-T + 5% fat-free dry milk; Zip8:
1/300 dilution in TBS-T + 5% FCS; pCREB: 1/1000 dilution in TBS-T + 5% FCS; β-actin:
1/2000 dilution in TBS-T + 5% fat-free dry milk). After washing again with TBS-T, the



Int. J. Mol. Sci. 2023, 24, 1191 9 of 11

membranes were incubated with the respective secondary antibody, namely anti-mouse-
HRP for CREM C-2 or anti-rabbit-HRP for β-actin, pCREB, and Zip8 for at least 2 h (both
diluted 1/2000 in TBS-T + 5% fat-free dry milk; from Cell Signalling Technology, Danvers,
MA, USA). Immunodetection was performed with LumiGlo Reagent (Cell Signalling
Technology, USA) using LAS-3000 (Fujifilm Lifescience, Düsseldoff, Germany). Band
density was analyzed with ImageJ software (Version 1.53k, National Institutes of Health,
Bethesda MD, USA).

4.6. Statistical Analysis

The data are shown as the mean values ± SEM. Significance was analyzed by two-
tailed Student’s t-test; *, **, and *** represent p ≤ 0.05, p ≤ 0.01, and p ≤ 0.001, respectively.
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