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Cancer mortality is exacerbated by late-stage diagnosis. Liquid biopsies based on 
genomic biomarkers can noninvasively diagnose cancers. However, validation stud-
ies have reported ~10% sensitivity to detect stage I cancer in a screening population 
and specific types, such as brain or genitourinary tumors, remain undetectable. We 
investigated urine and plasma free glycosaminoglycan profiles (GAGomes) as tumor 
metabolism biomarkers for multi-cancer early detection (MCED) of 14 cancer types 
using 2,064 samples from 1,260 cancer or healthy subjects. We observed widespread 
cancer-specific changes in biofluidic GAGomes recapitulated in an in vivo cancer pro-
gression model. We developed three machine learning models based on urine (Nurine = 
220 cancer vs. 360 healthy) and plasma (Nplasma = 517 vs. 425) GAGomes that can detect 
any cancer with an area under the receiver operating characteristic curve of 0.83–0.93 
with up to 62% sensitivity to stage I disease at 95% specificity. Undetected patients 
had a 39 to 50% lower risk of death. GAGomes predicted the putative cancer location 
with 89% accuracy. In a validation study on a screening-like population requiring ≥ 
99% specificity, combined GAGomes predicted any cancer type with poor prognosis 
within 18 months with 43% sensitivity (21% in stage I; N = 121 and 49 cases). Overall, 
GAGomes appeared to be powerful MCED metabolic biomarkers, potentially doubling 
the number of stage I cancers detectable using genomic biomarkers.

cancer biomarkers | liquid biopsy | multi-cancer early detection | prognosis | metabolomics

Early cancer detection is generally considered an effective strategy for reducing patient 
mortality. Screening programs for breast, prostate, lung, colorectal, and cervical cancer 
have significantly reduced mortality rates (1). However, there are currently no approved 
biomarkers for the early detection of most cancer types (2).

In recent years, significant advances have been made toward developing liquid biopsy 
platforms for universal cancer screening, or multi-cancer early detection (MCED), using 
noninvasive biofluidic biomarkers (3, 4). These platforms typically rely on sequencing 
and detecting cancer-derived fractions of circulating free DNA (cfDNA) (5). However, 
considerable challenges impede liquid biopsies. First, they mainly interrogate a specific 
layer of biological information about cancer, namely genomics. Second, some cancer types 
do not shed measurable cfDNA levels. A recent study (6, 7) classified 12 cancer types as 
“high-signal.” The remaining >30 cancer types account for 50% of global cases and are 
responsible for one-third of all cancer deaths. We noted that cancer types such as genito-
urinary and brain remained almost undetectable using cfDNA. Third, sensitivity to stage 
I cancer, small tumors that have not yet grown deep into nearby tissues, lymph nodes, or 
other body parts, remains far from ideal. Stage I sensitivity is critical for shifting to early, 
potentially curable, stage cancers, which is generally considered a prerequisite for reducing 
mortality through screening. Fourth, it remains unclear whether cancers detected by liquid 
biopsy screening have a poor prognosis. That is, whether they are potentially clinically 
significant instead of resulting in overdiagnosis and increasing screening’s harm/benefit 
ratio. Some of these challenges have been addressed by combining multiple information 
sources (e.g., DNA and proteins) to specifically detect distinct cancer types (8) by focusing 
on DNA fragmentation patterns instead of gene driver variants (9), enriching tumor-spe-
cific DNA methylation patterns (6, 10, 11), or reducing signal interference from clonal 
hematopoiesis (12). Generally, this approach has improved stage I sensitivity, sometimes 
as high as 70% (9). However, the complex assays required for these advanced liquid 
biopsies have increased costs that may be prohibitive for nationwide screening of the 
general population. Importantly, only a few liquid biopsies have validated their stage I 
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sensitivity in an external representative population for MCED. 
The most extensively validated liquid biopsy based on targeted 
methylated cfDNA reported 16.8% stage I sensitivity in an exter-
nal population (7). However, this may be overestimated since the 
study included symptomatic cancer cases, which are not repre-
sentative of the MCED population. The only study validating a 
liquid biopsy for MCED in a screening-like external population 
detected 5 of 49 stage I cancers, giving it a stage I sensitivity of 
10.2% (13).

Instead of genomics and proteomics, we investigated cancer 
metabolism as an identifiable cancer hallmark that could fill the 
information gap of current liquid biopsy platforms (14, 15). A sys-
tems biology pan-cancer analysis of tumor metabolism identified 
cancer-specific reprogramming of glycosaminoglycan (GAG) bio-
synthesis (16, 17). GAGs are a class of polysaccharides with remark-
able structural diversity, reflecting complex sulfation and epimerization 
patterns arising during their template-free biosynthesis (18). The 
biological functions of GAGs include modulation of the extracellular 
matrix, cell proliferation and metabolism, and immune supervision 
(19, 20). Initially, we observed that plasma and urine free GAG 
profiles (GAGomes) were significantly altered in renal cell carcinoma 
(RCC), a genitourinary tumor, at any stage from organ-confined to 
metastatic disease (17, 21–23). This finding prompted us to investi-
gate free GAGomes across different cancer types and develop a stand-
ardized high-throughput ultra-high-performance liquid 
chromatography coupled with triple-quadrupole mass spectrometry 
(UHPLC-MS/MS) method to measure free GAGomes (24).

In this study, we explored whether plasma and urine free 
GAGomes deviated from baseline physiological levels in 14 cancer 
types and could serve as metabolic cancer biomarkers. Next, we 
validated using free GAGomes for MCED in an external popu-
lation, generating the largest compendium of biofluidic free 
GAGomes to date with 2,064 samples from 1,260 cancer patients 
and healthy subjects.

Study Design and Free GAGome 
Measurements

We first conducted a case-control development study that included 
979 subjects, 553 cancer patients representing 14 cancer types 
(Fig. 1A; N = 14–104, median per type = 28), and 426 healthy 
subjects, with similar demographic characteristics taken from 
multi-site international cohorts (Sweden and Italy; Table 1 and 
Dataset S1). Thirty-four percent of cancer patients were classified 
as stage I/low grade (6 to 66% across types, median per type = 
41%; see methods for descriptions of staging and grading criteria; 
see SI Appendix, Table S1 for the number of samples across stages/
grades). We measured the free GAGome in plasma from 96% of 
subjects (N = 942, 517 cancer and 425 healthy) and in urine from 
57% of subjects (N = 560, 220 cancer and 340 healthy; all but 
one had a matched plasma GAGome) using standardized 
UHPLC-MS/MS kits in a single-blinded central laboratory (24). 
The free GAGome comprised the concentration of 17 disaccharide 
subunits of chondroitin sulfate (CS), heparan sulfate (HS), and 
hyaluronic acid (HA) (SI Appendix, Fig. S1 and Table S2) and 
calculated GAGome features (SI Appendix, Figs. S3 and S5), such 
as CS and HS charge, resulting in 39 total features per fluid. Of 
these 39 features, we found that six plasma and 17 urine GAGome 
features were detectable since their mean concentration was >0.1 
µg mL−1.

Free GAGomes in Cancer and Healthy Subjects. Next, we 
compared each detectable GAGome feature in each cancer type 
to their baseline physiological level in healthy subjects using a 

Bayesian mixed effect linear regression model with a skewed-
normal response. The sensitivity analysis showed that model 
estimates were robust to the choice of prior width (SI Appendix, 
Fig. S2). We considered a GAGome feature meaningfully different 
from physiological levels for a given cancer type based on a region 
of practical equivalence (ROPE) centered on the level estimated 
in healthy subjects (Fig. 1 B and C and SI Appendix, Figs. S1 and 
S3, and Dataset S2). This analysis highlighted several GAGome 
features that deviated from physiological levels across multiple 
cancers (Fig. 1B and SI Appendix, Fig. S4). For example, we 
observed an almost universal increase in the urine and plasma 
concentration of non-sulfated CS (0S CS). We also identified 
several cancer-type-specific GAGome features, such as a lower 
plasma CS charge in colorectal cancer (CRC) and diffuse large B 
cell lymphoma (NHL), and elevated urine 2S6S CS in prostate 
cancer (PCa).

Development of Free GAGome MCED Scores. Having confirmed 
that all cancer types shared a universal GAGome feature signature 
that differed from baseline physiological levels, we explored using 
free GAGomes to robustly discriminate any cancer from healthy 
subjects. We used cross-validation projection predictive variable 
selection (25,26) to develop three Bayesian logistic regression 
models to correlate any cancer vs. healthy subjects. The variable 
selection procedure converged on a minimal subset of informative 
GAGome features from plasma (Nfeatures = 3), urine (Nfeatures = 13), 
or both (Nfeatures = 14; SI Appendix, Fig. S6 and Dataset S3). Each 
model was internally validated by bootstrap resampling to control 
for overfitting (SI Appendix, Fig. S7). We defined each model’s 
log-predicted probability of any cancer as the plasma, urine, and 
combined free GAGome MCED score. The sensitivity analysis 
results suggested that the variable selection was robust to the 
prior choice. First, the variable selection procedure converged to 
a common set of top six features irrespective of the choice of prior 
width. Second, the alternative projected models resulted in scores 
highly correlated with the combined free GAGome MCED score 
(SI Appendix, Fig. S8).

For each of the three free GAGome MCED scores, we estimated 
metrics of discrimination (in terms of area under the receiver 
operating characteristic curve [ROC; AUC]) and clinical useful-
ness (sensitivity at 95% specificity). The scores distinguished any 
cancer from healthy subjects with an AUC = 0.83 (95% confi-
dence interval [CI]: 0.80–0.86) for plasma (Fig. 1 D–G and SI 
Appendix, Fig. S9), AUC = 0.88 (95% CI: 0.85–0.91) for urine 
(Fig. 1 E–G and SI Appendix, Fig. S9), and AUC = 0.93 (95% CI: 
0.90–0.95) for combined plasma and urine (Fig. 1 F and G and 
SI Appendix, Fig. S9). The sensitivity to any cancer for the plasma, 
urine, and combined free GAGome MCED score was 46.2% 
(95% CI: 41.9 to 50.6%), 66.8% (95% CI: 60.2 to 73.0%), and 
65.8% (95% CI: 58.4 to 72.6%) at 95% specificity, respectively 
(Fig. 1H). At 99% specificity, the sensitivity was 25.7% (95% CI: 
22.0 to 29.7%) for plasma, 25.0% (95% CI: 19.4 to 31.3%) for 
urine, and 35.3% (95% CI: 28.4 to 42.7%) for combined plasma 
and urine (SI Appendix, Table S3). In the stage I/low-grade disease 
subset, the sensitivity at 95% specificity was 41.6% (95% CI: 34.2 
to 49.2%) for plasma, 62.3% (95% CI: 47.9 to 75.2%) for urine, 
and 61.4% (95% CI: 45.5 to 75.6%) for combined plasma and 
urine (SI Appendix, Table S3). All three scores showed a weak 
dependency between free GAGome alterations and tumor stage 
or grade, with a slight sensitivity increase in stages I–II and further 
in stages I–III (Fig. 1H and SI Appendix, Table S3). Overall, we 
observed a similar sensitivity of each score across individual cancer 
types (Fig 1I and SI Appendix, Fig. S9 and Table S4). The top 
detected cancer types were NHL, CRC, and chronic lymphocytic D
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Fig. 1. Development of plasma, urine, and combined free GAGome MCED scores. (A) Development study overview and summary of free GAGome analysis  
(Ntot = 979, 553 cancers vs. 426 healthy; Nplasma = 517 cancers vs. 425 healthy; Nurine = 220 cancers vs. 340 healthy; Ncombined = 184 cancers vs. 339 healthy). (B and C) 
Estimated means of plasma and urine GAGome features conditional on the cancer type (median Nplasma per cancer type = 30, range: 14–83; median Nurine = 50 per 
cancer type, range: 17–56). Dots signify credible deviations from healthy subjects (i.e., from baseline physiological levels defined by ROPE criteria [see Methods]). 
The vertical axis denotes independent and dependent GAGome features (measured in μg mL-1 [except for charge, which is a.u.] or %w/w, respectively). (D–F) Free 
GAGome MCED scores across different stage/grade groups for plasma (NH= 425, NS1/LG= 178, NS2= 54, NS3= 57, and NS4/HG= 217), urine (NH= 340, NS1/LG= 53, NS2= 18, 
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Cancers with unspecified stage/grade were omitted (N = 11 and 2 for plasma and urine, respectively). Scores were capped to the interval (−6,6); see SI Appendix, 
Table S5 for non-visualized data points). (G) ROC curves for plasma, urine, and combined scores in the discrimination of cancers vs. healthy (N as in panel A). 
(H) Sensitivity at 95% specificity for the plasma, urine, and combined scores across different stage/grade groups (N as in panels D–F). Colors as in G. Error bars 
denote the 95% CI boundaries. (I) Sensitivity at 95% specificity for the plasma, urine, and combined scores across different cancer types (N as in SI Appendix, 
Table S4). Error bars denote the 95% CI boundaries. Colors as in G. (J and K) Cancer-type prediction using a Bayesian Additive Regression Trees model in the 
training (N = 110, five cancer types) and test (N = 74, five cancer types) sets. The numbers in the boxes represent the number of samples classified as belonging 
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(N = 370, 13 cancer types), urine (N = 162, four cancer types), and combined (N = 152, four cancer types) scores. For each score, patients with scores greater than 
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S4/HG, stage IV or high grade; see Table 1 for cancer types.D
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leukemia (CLL) for the plasma score (range: 23.4% in bladder 
cancer [BCa] to 66.7% in NHL, CLL, and CRC) and RCC and 
non-small cell lung cancer (NSCLC) for the urine or combined 
scores (range: 47.1% in head and neck [HN] squamous cell car-
cinoma to 82.4 to 84.6% in RCC, for urine and combined, respec-
tively). Altogether, these findings suggested that free GAGomes 
differed significantly from physiological levels across early- and 
late-stage cancers and could be used for MCED.

Prediction of the Putative Cancer Location (PCL) using Free 
GAGomes. Given the presence of distinctive free GAGomes 
across cancer types (Fig. 1 B and C and SI Appendix, Fig. S10), 
we explored whether these patterns could be used to identify 
the cancer type. We developed a multinomial Bayesian Additive 
Regression Trees model (27) using a training set (N = 110 across 
five cancer types) to predict the cancer type based on combined free 

GAGomes (Fig. 1J). Next, we validated the model’s accuracy in a 
test set (N = 74). The balanced classification accuracy was 74.3% 
(95% CI: 68.1 to 80.3%; Fig. 1K). We grouped tumors into two 
PCLs that would be actionable for location-specific diagnostic 
work-up: respiratory tract (NSCLC and HN) vs. genitourinary 
tumors (RCC, PCa, and BCa). The PCL prediction accuracy was 
89.2% (95% CI: 82.2 to 96.4%).

Correlation between Free GAGome MCED Scores and Overall 
Survival (OS). To assess whether altered GAGome features associated 
with cancer were suggestive of aggressive tumor biology, we 
correlated each score with OS. From the date of sample collection, 
the median follow-up time was 17 mo in the plasma cohort (N 
= 370 across 13 cancer types, range: 14–47 per type; Ndeaths = 
82, range: 1–18 per type), 15 mo in the urine cohort (N = 162 
across four cancer types, range: 17–50 per type; Ndeaths = 33, range: 

Table 1. Population characteristics in the development (left) and validation (right) study

Development study (N = 979) Validation study (N = 281)

Controls Cases Controls Cases
Healthy subjects Cancer patients No cancer in 18 mo Cancer in 18 mo

N 426 553 N 110 171

Age 59 [22, 78] 67 [21, 91] Age 60 [25, 84] 62 [29, 81]

Sex Sex

Female 246 (57.7%) 253 (45.8%) Female 50 (45.5%) 87 (50.9%)

Male 180 (42.3%) 300 (54.2%) Male 60 (54.5%) 84 (49.1%)

Sample availability Sample availability

Plasma only 86 (20.2%) 333 (60.2%) Plasma and urine 110 (100%) 171 (100%)

Plasma and urine 339 (79.6%) 184 (33.3%) Blood chemistry

Urine only 1 (0.2%) 36 (6.5%) CRP (mg/dL) 1.3 [0.3–14.9] 1.5 [0.2–19.3]

Tumor stage/grade HDL-C (mg/dL) 1.4 [0.8–2.3] 1.4 [0.8–2.8]

Stage I/low grade* 187 (33.8 %) Tumor stage†

Stage II* 56 (10.1%) Stage 0 13 (7.6%)

Stage III* 59 (10.7%) Stage I 59 (34.5%)

Stage IV/high grade* 238 (43%) Stage II 35 (20.5%)

Unspecified stage/grade 13 (2.4%) Stage III 33 (19.3%)

Tumor histology Stage IV 18 (10.5%)

Breast cancer (BC) 28 (5.1%) Unspecified stage 13 (7.6%)

Bladder cancer (BCa) 47 (8.5%) Tumor histology†

Chronic lymphocytic leukemia (CLL) 18 (3.3%) Breast cancer (BC) 45 (26.3%)

Cervical cancer (CST) 28 (5.1%) Colorectal cancer (CRC) 40 (23.3%)

Colorectal cancer (CRC) 27 (4.9%) Gynecological cancers (CST/EC/OV) 11 (6.4%)

Diffuse glioma (DG) 40 (7.2%) Non-small cell lung cancer (NSCLC) 18 (10.5%)

Diffuse large B cell lymphoma (NHL) 30 (5.4%) Prostate cancer (PCa) 42 (24.6%)

Endometrial carcinoma (EC) 30 (5.4%) Urinary tract cancers (BCa/RCC) 15 (8.8%)

Head and neck cancer (HN) 17 (3.1%) Time to diagnosis†

Non-small cell lung cancer (NSCLC) 83 (15.0%) < 3 mo 35 (20.5%)

Ovarian carcinoma (OV) 30 (5.4%) 3 to 18 mo 136 (79.5%)

Prostate cancer (PCa) 104 (18.8%) Confirmation of cancer diagnosis†

Renal cell carcinoma (RCC) 57 (10.3%) Linkage to Dutch Cancer Registry 171 (100%)

Small intestinal neuroendocrine tumor  
(GNET)

14 (2.5%)

Distributions are summarized as median and range. Key: CRP, high sensitivity C-reactive protein in heparin; HDL-C, high-density lipoprotein cholesterol in heparin.
*“Stage I/low grade” included cancers with TNM (8th edition), FIGO or Ann Arbor stage I, ENETS grade 1, Gleason grade <7, or non-grade IV glioma; “Stage IV/high-grade” included cancers 
with TNM (8th edition), FIGO or Ann Arbor stage IV, ENETS grade 2, Gleason grade ≥7, or grade IV glioma; “Stage II” and “Stage III” included cancers with the corresponding stage number 
in the TNM (8th edition) or FIGO or Ann Arbor systems. See SI methods for details on staging and grading criteria for grouping in the development study.
†Stage, time to diagnosis, and histology information were determined through linkage with the Dutch Cancer Registry. Note that self-reported cancer cases not confirmed by the Dutch 
Cancer Registry were excluded from the validation study (see Methods).
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4–13 per type), and 15 mo in the combined cohort (N = 152 
across four cancer types, range: 17–50 per type; Ndeaths = 33, range: 
4–13 per type). All three scores were independent OS predictors 
in a multivariable Cox regression (hazard ratio [HR] = 1.29, 95% 
CI: 1.06–1.56, and P = 0.0009 for plasma; HR = 1.79, 95% 
CI: 1.27–2.53, and P = 0.0009 for urine; HR = 1.91, 95% CI: 
1.33–1.73, and P = 0.0004 for combined) after adjusting for 
cancer type, age, sex, and stage IV or high-grade disease. These 
findings associated free GAGome alterations with aggressive 
cancer phenotypes. Furthermore, they suggested that subjects 
with a score below the 95% specificity cutoff—i.e., undetected 
when using the free GAGome MCED scores—might have a better 
prognosis. To confirm this for each score, we dichotomized patients 
into “high” vs. “low” groups depending on whether their score 
was above or below the score-specific 95% specificity cutoff. For 
plasma and urine, Kaplan–Meier survival analyses suggested that 
“low” risk (undetected) patients had a 39 to 50% lower risk of 
death than “high” risk (detected) patients (HR = 0.61, 95% CI: 
0.44–0.85, and P = 0.0031 in plasma [Fig. 1L]; HR = 0.50, 95% 
CI: 0.25–0.98, and P = 0.0441 in urine [Fig. 1M]). The survival 
difference between groups did not reach statistical significance 
for the combined score (HR = 0.86, 95% CI: 0.50–1.49, P = 
0.5950; Fig. 1N). Importantly, we observed a lower risk of death in 
both the stage I-III/low-grade subset and the stage IV/high-grade 
subset, suggesting that the correlation between free GAGomes and 
prognosis was independent of the stage (SI Appendix, Fig. S11 
A–C). In a sensitivity analysis, an alternative dichotomization with 
a “high” vs. “low” risk cutoff optimized using maximally selected 
rank statistics resulted in significant correlations between all three 
scores and OS across and within cancer types (Supplementary Note 
and SI Appendix, Figs. S12 and S13). Cumulatively, these survival 
analyses suggested that patients who would be undetected with 
the free GAGome MCED scores had a better prognosis and less 
aggressive cancer phenotype independent of tumor stage and grade.

Validation of Free GAGome MCED Scores. We sought to confirm 
whether the free GAGome MCED scores could be used in a 
representative population for screening. We focused on the 
combined GAGomes as the best performing test and, before 
validation, we repeated the variable selection limited only to 
independently measured GAGome features as we reasoned that 
focusing on less as well as independently measured variables would 
increase test robustness and facilitate assay reproducibility. This 
step pruned the model size from 14 to 5 GAGome features (plasma 
0S CS, 0S HS urine, NS HS urine, 4S CS urine, 6S CS urine) 
with minimal performance loss when applied to the development 
study (AUC = 0.85 [95% CI= 0.81–0.88], SI Appendix, Figs. S14–
S16). Then, we conducted a prospectively planned cohort-based 
case-control study to test the pruned combined free GAGome 
MCED score in an independent and external retrospective cohort 
of apparently cancer-free adults from the Lifelines Cohort Study, 
a population-based biobank in the Netherlands. Of the 145,526 
cancer-free adults recruited by Lifelines Cohort Study, after linkage 
with the Dutch Cancer Registry, we included 171 subjects with a 
confirmed cancer diagnosis within 18 mo of the baseline visit and 
110 age-, sex-, and biochemistry-matched subjects that remained 
cancer-free through the follow-up visit (Fig. 2A and Table 1). The 
subject flow is described in SI Appendix, Fig. S17.

We observed that pruned scores were higher in cases than in 
controls (Fig. 2B). The pruned score predicted any type of cancer 
diagnosis within 18 mo of the baseline visit with an AUC = 0.65 
(95% CI: 0.58–0.72; SI Appendix, Fig. S18 and Table S6). In the 
stage 0-II disease subset (N = 217, 107 cases), AUC = 0.62 
(95% CI: 0.54–0.69), and in the diagnosis within 3 mo after the 

baseline visit subset, AUC = 0.69 (95% CI: 0.61–0.78). This 
performance was consistent with the expectation that as the score 
increased (albeit weakly) with the stage at diagnosis, it decreased 
with the time to the cancer diagnosis after the baseline visit . The 
discriminatory performance was similar across cancer types, rang-
ing from AUC = 0.71 (95% CI: 0.59–0.82) in NSCLC to AUC 
= 0.58 (95% CI: 0.40–0.75) in gynecological cancers (SI Appendix, 
Fig. S18 and Table S6).

The pruned score performed remarkably well considering the 
appreciable population differences between the validation and devel-
opment studies. First, while the validation controls from the 
Lifelines Cohort Study were not screened for potential comorbid-
ities, the development study controls were selected for self-rated 
healthy status. Second, the country of origin of the subjects differed 
(Netherlands vs. Sweden or Italy) as well as the pre-analytical pro-
tocols. However, few controls with outlier GAGome features 
resulted in lower specificity than required in screening settings, 
which typically range from ≥95% in the elevated risk population 
to ≥99% in the general population (5). We explored correlations 
between subject characteristics and the pruned score to investigate 
potential confounders (SI Appendix, Table S7). Consistent with 
known confounders of free GAGomes (28), we found a significant 
linear correlation between the pruned score and serum C-reactive 
protein (CRP; Kendall correlation coefficient [τ] = 0.29, P < 2 × 10−6) 
and high-density lipoprotein-cholesterol (HDL-C) levels (τ = 
−0.16, P = 0.02). When we examined the correlation between the 
pruned score and CRP or HDL-C levels in the healthy controls 
included in the development study, we also found that scores were 
higher when either biomarker had an abnormal value (+60%, P = 
0.0004; two-sided t test; SI Appendix, Fig. S19), indicating that the 
sensitivity was possibly underestimated in the development study. 
In the validation study’s subset without acute inflammation (CRP 
> 4 mg dL−1) or metabolic syndrome (HDL-C <1 mmol L−1; N = 
121, 49 cases), almost all subjects with outlier GAGome values were 
controlled for, resulting in 31% sensitivity (95% CI: 14 to 47%) 
at 95% specificity to predict any type of cancer within 18 mo of 
the baseline visit (32% sensitivity to stage 0–II disease [95% CI: 14 
to 48%] and 26% to stage I [95% CI: 5 to 47%]; Fig. 2C and SI 
Appendix, Table S6). Since the median follow-up time in the case 
arm was 7.8 y, we could confirm whether the detected cancers were 
likely to be clinically significant by classifying cases as poor prognosis 
(deaths <7.8 y after diagnosis; N = 7) vs. not (Fig. 2D). The pruned 
score had 43% sensitivity (95% CI: 14 to 86%) at 95% specificity 
to predict cancer with poor prognosis. At 99% specificity, it had 
21% sensitivity for stage I cancers and 43% for cancer with poor 
prognosis (SI Appendix, Table S6). Overall, the pruned combined 
free GAGome MCED score appeared to be useful for MCED when 
confirmed in an independent screening-like population with accept-
able sensitivity to stage I and poor prognosis cancers, which might 
lead to significant stage-shifting while limiting overdiagnosis.

Free GAGome Dynamics in an In Vivo Model of Cancer Progression. 
We investigated whether the alterations in free GAGomes attributed 
to any cancer type were mechanistically associated with cancer onset 
and progression in vivo. We performed longitudinal measurements 
of urine and plasma free GAGomes in BALB/c (BALB/cAnNCrl) 
mice in which murine renal adenocarcinoma tumor cells were 
induced orthotopically on day zero (N = 20 in 10 metabolic cages; 
Fig. 3A). The kidney harboring the tumor was resected on day 
7, and the mice were sacrificed on day 20. All mice developed 
metastases (>25 lesions, >100 in 85% of mice). This model was 
chosen since it recapitulates cancer progression from localized to 
metastatic recurrence after surgery (29). A principal component 
analysis showed that alterations in the plasma free GAGomes D
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(Fig. 3B) and to a lesser extent in the urine free GAGomes (Fig. 3C) 
were consistent with progression from baseline (day 0) to localized 
growth (day 6) to post-operative resection (day 8) to metastasis 
(day 20). Consistent with the patterns observed in human cancer 
samples above, we found a credible linear increase in 0S CS across 
the timepoints in both plasma (% change at metastasis vs. baseline 
of 148% [95% CI: 91 to 213%]; Fig. 3D) and urine (116% [95% 
CI: 37 to 207%]; Fig. 3E). Changes in 4S CS are shown in SI 
Appendix, Fig. S20. These findings suggested that the free GAGome 
alterations captured by the scores were causally associated with 
cancer initiation and progression.

Discussion

Consistent with previous pan-cancer analyses (17, 30), this study 
has shown the reprogramming of tumor metabolism—a cancer 
hallmark (14)—reflected in altered GAGomes across cancers. 
Compared to baseline physiological levels, we observed widespread 
changes in the free GAGomes of cancer patients already at stage I. 
We causally linked these changes to cancer progression in an 
in vivo mouse model. Together with the validation study, this 
experiment reinforces the plausible biological association between 
free GAGomes and the occurrence of any type of cancer. However, 
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Fig. 2. Validation of the pruned combined free GAGome MCED score. (A) Validation study subject flow (see also SI Appendix, Fig. S17). (B) Pruned combined 
free GAGome MCED scores across subjects with and without a cancer diagnosis 18 mo after the baseline visit (Ntot = 281, 110 controls vs. 158 cases; 13 cases 
with no stage information at diagnosis were omitted). Subjects that received a cancer diagnosis within 18 mo are grouped and colored according to the stage 
at diagnosis. The point and line range represent the median ± 1 standard deviation of the scores within each group. (C and D) Pruned combined free GAGome 
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the exact mechanisms remain elusive, and elucidating them will 
be critical for minimizing false positives in a clinical setting (See 
SI Appendix, Discussion).

Nevertheless, we used these free GAGome alterations to develop 
a liquid biopsy test for MCED. Unlike genomics- and proteom-
ics-based MCED assays that survey an entire landscape of 
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potential alterations (e.g., >100,000 CpG sites with altered meth-
ylation7), free GAGomes comprise a comparatively finite feature 
set. As few as five GAGome features could extract meaningful 
information about cancer’s spatial and temporal status from an 
early stage. From a practical perspective, this allows for a relatively 
simple, low-cost assay, making it more feasible to implement in 
high-volume settings such as cancer screening and presumably 
with more robust predictive performance. Using the free GAGome 
MCED scores, the sensitivity to any type of stage I/low-grade 
cancer was 41.6 to 62.3% at 95% specificity. In comparison, other 
MCED assays have reported 39 to 73% sensitivity to stage I can-
cers. However, these estimates are limited to 12 cancer types gen-
erally considered “high-signal” and perform poorly in cancers that 
emit little cfDNA, such as genitourinary and brain (6, 8, 9). 
Notably, we observed that free GAGomes were altered in all 14 
cancer types tested, including low- and high-grade gliomas and 
RCC, the latter consistent with our earlier studies (17, 21).

To our knowledge, only two assays have reported performance 
estimates in an external validation study (7, 13), of which only 
Lennon et al. included a representative population for MCED 
(13). Lennon et al. estimated the sensitivity for stage I cancers 
(10.2% at ~99% specificity) dropped significantly compared to 
the initially reported performance in early-stage cancers for the 
same technology (AUC = 0.91 with ~45% sensitivity to stage I 
cancers (8)). We also observed a similar trend during validation. 
These differences could arise for various reasons, including 
unknown biological or demographic factors across study popula-
tions, differences in sample collection or other pre-analytical pro-
cedures, overfitting/optimism during prediction modeling, and 
analytical precision of the underlying assay, all of which deter-
mines measurement noise. Our results show that simplifying the 
combined score and accounting for confounding conditions like 
acute inflammation—either by excluding subjects with an aber-
rant blood chemistry pre-test or by incorporating such informa-
tion in the interpretation of the MCED test results as it is done 
with clonal hematopoiesis for the above mentioned MCED 
assays—may control these factors and maintain a high sensitivity 
to stage I cancer in an MCED population. At equivalent specific-
ity, the combined score would find 2.1 times more stage I cancers 
than the MCED assay of Lennon et al. (21% vs. 10.2% at 99% 
specificity) despite the longer prediction time in our study (18 vs. 
12 mo after sampling); and 25% more than the MCED assay of 
Klein et al (7) (21% vs. 16.8%) -  although this may be an under-
estimation since cases in Klein et al. were symptomatic at sampling 
and not selected from the same cohort as the controls. Notably, 
most cancers detected by our combined score had a poor progno-
sis, which may increase the odds of their clinical significance were 
they to be found earlier, potentially limiting overdiagnosis.

Based on this data and assuming a 1% cancer prevalence in a 
screening population for MCED, the estimated positive and neg-
ative predictive value of a free GAGome MCED test would be 
17.5% and 99.2%, respectively. From a technical standpoint, 
based on the experience from this study and foreseeable optimi-
zations, we expect a throughput of 100 patient samples per day 
per UHPLC-MS/MS instrument at a cost per sample <$50. This 
cost is 5–10 times lower than a previous estimate for a cfDNA/
protein-based MCED test (8) and well below its presumed health 
economics value of ~$1200 (31). The final cost depends on 
whether the free GAGome MCED test requires one (urine or 
plasma) or two samples (both urine and plasma) per patient. 
Overall, we believe that a future screening program using a free 
GAGome-based MCED test appears realistic.

The metabolic nature of free GAGomes and their ability to detect 
cancer types that are poor cfDNA-shedders greatly complements 

genomic biomarker-based liquid biopsies, paving the way for a mul-
timodal MCED approach. Such an approach may increase sensitiv-
ity to stage I cancers even further to a level where cancer mortality 
could be substantially curbed by early detection alone (32).

Materials and Methods

Development  Study Design and Patient Recruitment. The design was a 
case-control study with subjects enrolled both retrospectively and prospectively 
across four sites (Uppsala Umeå Comprehensive Cancer Consortium (U-CAN), 
Uppsala, Sweden; Sahlgrenska University Hospital, Göteborg, Sweden; Sabbatsberg 
Hospital, Stockholm, Sweden; and San Raffaele Hospital, Milan, Italy). The study 
population comprised cases defined as patients with confirmed cancer diagnosis 
(no history of cancer, active disease [treatment naïve or metastatic disease] across 14 
cancer types) and controls defined as self-rated healthy subjects (moderated to very 
good health, no history nor known family history of cancer). All subjects provided 
informed consent at the sites under IRB approved protocols. The ethical approvals 
were granted by the Ethical Committee (Regionala Etikprövningsnämnden, currently 
renamed as Etikprövningsmyndigheten) in Gothenburg, Sweden (approvals: #047-
16, #198-1, #940-17, #737-17, #469-17) and the Ethical Committee at San Raffaele 
Hospital, Milan, Italy (approval: #50/2018). Details on recruitment procedures and 
eligibility criteria are provided in the Supplementary Methods.

Clinical data related to age, sex, eligibility criteria, as well as date of death or 
last known alive, diagnosis, and tumor grade or stage for all cases, were retrieved 
from patients’ journals in the case arm and through a questionnaire in the control 
arm. Cases were grouped by cancer type and by stage/grade. Specifically, we 
classified cases as early-stage or low-grade vs. stage IV or high-grade as follows: 
TNM I-III vs. TNM IV in BC, CRC, NSCLC, RCC, BCa, HN; G1 (Mitotic count (10 HPF) 
<2 and Ki67 < 2) vs. G2 (Mitotic count (10 HPF) 2 to 20 and Ki67 3 to 20) in 
GNET; lower-grade glioma vs. glioblastoma multiforme in DG; FIGO stage I vs. 
II-IV in CST and I-II vs. III-IV in EC/OV; Binet stage A-B vs. C in LL; Anna Arbor stage 
I-II vs. III-IV in NHL; pathological Gleason grade < 7 vs. >= 7 in PCa. Further 
subsets were stage I/low-grade including all early-stage/low-grade except TNM 
II-III, FIGO stage II, Binet stage B, and Ann Arbor stage II; stage II including TNM 
II, FIGO stage II, Binet stage B, and Ann Arbor stage II; stage III including TNM III, 
FIGO stage III, and Ann Arbor stage III.

Sample Collection and Pre-Analytical Procedures. Across all subjects, we 
successfully analyzed a total of 969 plasma and 560 urine samples, so divided: 
for the case arm, 517 plasma samples in 14 cancer types and 220 urine samples 
in five cancer types and for the control arm, 452 plasma and 340 urine samples. 
A subset of 184 cancer (five cancer types) and 339 healthy subjects had combined 
plasma and urine samples available. All subjects were de-identified and regis-
tered according to applicable national laws for bio-banking.

Whole blood samples were collected in K2 EDTA-coated tubes at room tem-
perature and processed within 15 min. The tubes were centrifuged (2,500 RCF for 
15 min at 4°C) and the plasma supernatant transferred to separate cryovials for 
storage at −80°C until shipment in dry ice. Urine was an any-void spot collection 
in polypropylene cups with 100–220 µL urine aliquoted into cryovials for storage 
at −20°C until shipment in dry ice. For specific subject groups, there were proto-
col deviations in the plasma and urine centrifugation step (see Supplementary 
Methods) attributable to different pre-analytical protocols in the robotic handling 
of samples across sites. These deviations are not expected to exert a remarkable 
effect on free GAGome measurements.

Free GAGome Measurements. Free GAGome measurements were per-
formed in a single-blinded GLP-compliant central laboratory using MIRAM® 
Free Glycosaminoglycan Kit (Elypta AB, Sweden), which is a standardized kit for 
GAG extraction, detection, and quantification by ultra-high-performance liquid 
chromatography (UHPLC) coupled with electrospray ionization triple-quadrupole 
mass spectrometry system (ESI-MS/MS, Waters® Acquity I-class Plus Xevo TQ-S 
micro). The total instrument run-time was 15 min per sample injection. A single 
UHPLC column equipped with a pre-column guard (Waters® ACQUITY UPLC BEH 
C18 VanGuard Pre-column) was sufficient to analyze all samples in this study 
with no quality deterioration observed over time. The analytical performance 
characteristics of the kit have been previously described (24).

In short, the kit is based on a method by Volpi et al. (33). The assay consists of 
the enzymatic depolymerization of GAGs from the sample into disaccharides by D
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Chondroitinase ABC and Heparinase I-II-III. The method omits proteolytic diges-
tion, thereby limiting the derived depolymerized GAGs to the protein-free frac-
tion—or free GAGs. Following depolymerization, disaccharides are labeled using 
2-aminoacridone and injected into an UHPLC-MS/MS for separation and detec-
tion. The peaks of the 17 disaccharides are acquired at using multiple reaction 
monitoring analysis implemented in the mass spectrometry software (Waters® 
TargetLynx). The chromatographic conditions and MS configuration were set in 
accordance with the kit instruction for use.

Each sample was measured in singleton. The so-measured free GAGome 
consisted of the semi-absolute concentrations of 17 disaccharides, correspond-
ing to eight different sulfation patterns of CS and HS, and the HA disaccharide. 
Specifically, we quantified eight CS disaccharides (0S CS, 2S CS, 6S CS, 4S CS, 
2S6S CS, 2S4S CS, 4S6S CS, TriS CS) and eight HS disaccharides (0S HS, 2S HS, 
6S HS, NS HS, NS6S HS, NS2S HS, 2S6S HS, TriS HS). We have previously noted 
prognostic and diagnostic potential of compositional GAGome features (17, 
21–23), so we expanded the free GAGome to include an additional 22 calculated 
features informative of GAG biology: the total CS and total HS concentration as 
the sum of the corresponding disaccharide concentrations, the CS charge [−] and 
HS charge [−] as the weighted sum of sulfated disaccharides, where the weight 
is the count of sulfo-groups in each disaccharide, two ratios (4S CS/0S CS and 6S 
CS/0S CS), and the relative concentration (or mass fraction, in %) of each of the 
16 CS and HS disaccharides by normalizing each concentration by the total CS 
and HS concentration, respectively. For each plasma or urine sample, the free 
GAGome consisted of maximally 39 features.

We excluded from downstream analyses those GAGome features below the 
limit of detection in most of plasma or urine samples—in other words, we con-
sidered such GAGome features undetectable in plasma or urine. We considered 
a GAGome feature detectable in a biofluid if the median concentration across all 
samples was above 0.1 µg mL−1 (24). We speculate that K2 EDTA contamination 
in plasma may be responsible for incomplete HS depolymerization, resulting in 
disaccharide levels below the limit of detection, which is in contrast to previous 
detection of HS—albeit in low amounts—when this is measured in serum (34). Next, 
we calculated four dependent features in plasma and 11 in urine, based on the 
detectable GAGome features. For plasma features, the following were calculated: 
a) total CS concentration, b) mass fractions of 0S CS, c) 4S CS, and d) 4S/0S CS ratio. 
In urine, the dependent features were a) total CS and b) total HS concentrations, 
mass fractions of c) 0S CS, d) 4S CS, e) 6S CS, f) 2S6S CS, g) 0S HS, h) NS HS, i) and 
j) two CS ratios (6S/0S and 4S/0S), and k) CS negative charge. Cumulatively, the 
final free GAGome had 23 (six plasma and 17 urine) detectable features.

We identified four (0.7%) urine and three (0.3%) plasma outliers in a two-
step procedure (see Supplementary Methods). The reported sample numbers 
throughout the manuscript excluded outliers.

Statistical Analysis and Bayesian Estimation. We carried out estimation of 
group differences in GAGome features by Bayesian estimation and equivalence 
testing (35). In short, we modeled each individual standardized GAGome feature 
as a response with a skew-normal distribution in a mixed effects model, where 
diagnosis was a fixed effect and experimental batch was treated as a random 
factor. We modeled the group-specific variances as a multiplicative interaction 
between the cancer-type and experimental batch. We estimated the predictors 
using ~Normal (0,5) for the means and ~Gamma (1,2) for the standard deviation. 
We tested the sensitivity to the prior choice by repeating the procedure with 
~Normal (0,2.5) and ~Normal (0,10) for the prior for group means. We consid-
ered the convergence of Bayesian estimation acceptable if the effective sample 
size > 5,000 and the potential scale reduction factor R < 1.001. We used the 
posterior samples to compute the 95% credible interval (95% CI) of group medi-
ans for each GAGome feature conditional on the diagnosis. Next, we computed 
the 95% CI for the difference in medians of each cancer diagnosis versus healthy. 
We omitted ratio features (4S CS/0S CS and 6S CS/0S CS) from this comparison 
because their respective models did not converge. We deemed that a GAGome 
feature was correlated with a cancer diagnosis vs. healthy subject group if 95% 
CI of the difference in means did not cross 0 and no more than 5% fell inside 
the pre-specified ROPE interval around 0. We defined the ROPE boundaries as 
0.2 of the overall standardized mean since the coefficient of variation previously 
observed in the measurement of GAGome features ranged between 15 and 25% 
(24). Bayesian estimation was carried out using the brms (2.14.4) (36, 37) and 
tidybayes (2.3.1) packages in R (4.0.4).

Development of Free GAGome MCED Scores. We aimed to identify a minimal 
subset of GAGome features which were informative for discrimination between 
cancer vs. healthy subjects. To this end, we used projection predictive variable 
selection to select relevant features independently in urine, plasma, and com-
bined free GAGomes. First, we fit three reference (plasma-only, urine-only, and 
combined) Bayesian multivariable logistic regressions with cancer (aggregating 
all cancer types) vs. healthy as a response and standardized detectable GAGome 
features as predictors. We excluded plasma CS charge as a predictor from plas-
ma-only and combined score, because 4S CS was the only detectable plasma 
sulfated (i.e., charged) feature. We used a heavy-tailed t-distribution (df = 7) 
with location 0 and scale 2.5 as a prior on the intercept and coefficients for all 
predictors. We tested the sensitivity to the prior choice by repeating the procedure 
with ~t-student (0,1.25) and ~t-student (0,5) on the intercept and coefficients 
for all predictors. We fit the models using rstanarm package (2.21.1) with four 
chains for a total of 4,000 iterations (2,000 warm-up). The Bayesian R2 of urine, 
plasma, and combined reference models was of 0.32, 0.41, and 0.56, respectively.

Next, we carried out the variable selection using leave-one-out cross-validation 
forward selection using the cv_varsel function from the projpred package (25, 26) in 
R (4.0.4). We selected the sub-model of a minimal size such that the estimated differ-
ence of sum of log predictive densities (ELPD) between the reference model and sub-
model was at most one standard error away from the zero (default). We then selected 
and projected the final set of sub-models, with the default suggested optimal model 
size (plasma—three features, urine—13 features, combined—14 features). Finally, for 
each model, we projected the 400 draws of the sub-model of the selected size and 
predicted the response using draws of the linear predictor (proj_linpred function, 
averaged over all parameters). The effect size of the response, called free GAGome 
MCED score, was predicted as log-odds of any-type cancer. Confidence intervals for 
sensitivity at 95% specificity were calculated using the binomial approximation.

Internal Validation of the Free GAGome MCED Scores. We validated the var-
iable selection procedure by bootstrap analysis. To this end, we analyzed 500 boot-
straps for plasma and 1,000 for urine and combined datasets. In each bootstrap, we 
first fit the reference logistic Bayesian regression model. We used the same priors and 
fitting parameters as described above (t-distribution priors with df = 3, 4,000 itera-
tions with 2,000 warm-up samples). Second, we carried out the projection predictive 
variable selection using leave-one-out cross-validation. Projection used 400 samples, 
with projected model size determined automatically by ELPD or set to 1/10 of the 
number of cases in the original dataset. The constraints on the maximal number 
of parameters were 51, 22, and 18 for plasma, urine, and combined, respectively. 
Finally, we predicted the response (log-odds of any-type cancer) using draws of the 
linear predictor for the three datasets: the bootstrap, assessment dataset (samples left 
out of the bootstrap), and the original dataset. We recorded the selected model size, 
AUC, sensitivity at 95% specificity, and scaled Brier metric for the full and projected 
model on the bootstrapped, original, and assessment dataset.

Putative Cancer Location Analysis. We carried out this analysis on the subset 
of cancer cases with combined free GAGomes available. We preselected detecta-
ble plasma and urine GAGome features as described above, which resulted in the 
inclusion of an additional urine GAGome feature, 4S6S CS. We trained a multino-
mial Bayesian Additive Regression Trees (BART) (27) on the samples in the training 
set (60%), where the cancer type was the response and the preselected GAGome 
features were the predictors. We assigned the category with the highest mean 
posterior probability as the predicted cancer type. We validated the prediction 
accuracy on the test set (40%). We further assigned cancer types to two putative 
cancer location (PCL) classes: respiratory tract (NSCLC, HN) and genitourinary 
tract (RCC, PCa, BCa). Confidence intervals for accuracy and balanced accuracy 
were calculated by 5’000 bootstrapped replicates using the normal approxima-
tion. BART regression was performed using the package BART (2.9) in R (4.0.4).

Survival Analysis. In the subset of cancer cases with survival data recorded, we 
correlated OS with the plasma, urine, and combined free GAGome MCED scores. 
OS was calculated as the time between the date of sampling and the time of event. 
The time of event is defined as right-censoring (date of last follow-up without 
the event) or as date of death from any cause. Multivariable survival analyses 
were performed by fitting a Cox proportional hazard model to estimate the odds 
ratio for the variables of interest and the 95% confidence interval. The log-rank 
statistical test was utilized to determine the significance of the regression. For 
each score, we constructed a multivariable Cox model also using the following D
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variables for regression of survival: age (as a scaled 3-knot splined continuous 
variable, in years), sex (male vs. female, binary variable), late stage (stage IV/high-
grade vs. not, binary variable), and cancer type (in plasma only, diffuse glioma vs. 
not, binary variable). Missing data were omitted. The validity of the proportional 
hazard assumption was checked using a two-sided t test between transformed 
survival time and the scaled Schoenfeld residuals (P > 0.01 for the global fit). We 
checked for overfitting by performing internal validation of each multivariable 
model using a bootstrapping algorithm (1,000 bootstraps) and observing the 
change in Somers’ D rank correlation (Dxy) statistics in the original datasets as 
opposed to the test set. A correction <20% was considered acceptable.

For each score, we dichotomized patients into two groups, “Low” vs. “High” score 
depending on the 95% specificity cutoff obtained for that score. We then fitted 
Kaplan–Meier survival curves to the two groups, and the statistical significance 
for survival difference (in terms of HR for OS in the “Low” vs. “High” risk group) 
was evaluated using the log-rank test. We performed subset analyses in stage I–III 
or low-grade patients only and stage IV or high-grade patients only. In a sensitiv-
ity analysis, we identified an alternative cutoff for each score by using maximally 
selected rank statistics if significant (M-score P < 0.01) and repeated the Kaplan–
Meier survival analysis. We performed subset analyses for each cancer type. P-values 
< 0.01 were considered significant. Statistical analyses were performed using the 
packages survival (3.2) and rms (6.2) and maxstat (0.7) in R (4.0.4).

External Validation of Free GAGome MCED Scores. We sought to validate the 
free GAGome MCED scores in a prospectively planned cohort-based case-control 
validation study. We identified Lifelines Cohort Study (38) as a suitable biobank 
that recruited an external population-based cohort representative of a poten-
tial screening population. Lifelines is a multi-disciplinary prospective popula-
tion-based cohort study examining in a unique three-generation design the 
health and health-related behaviors of 167,729 persons living in the North of 
the Netherlands. It employs a broad range of investigative procedures in assess-
ing the biomedical, socio-demographic, behavioral, physical, and psychological 
factors which contribute to the health and disease of the general population, with 
a special focus on multi-morbidity and complex genetics.

Biospecimen collection (urine and plasma) in Lifelines was done at a baseline 
visit where each included subject was also required to fill in a questionnaire 
with general information and self-reported health status, which included if the 
subject had received a cancer diagnosis before or at the time of sampling. Each 
subject was then required to partake in an 18-mo follow-up visit in which any 
cancer diagnosis received after the baseline visit was reported. We defined two 
arms: cases as subjects that were cancer-free at the baseline visit but reported a 
cancer diagnosis at the 18-mo follow-up visit and controls as subjects that were 
cancer-free at the baseline visit and stayed cancer-free at the 18-mo follow-up 
visit. See Supplementary Methods for the eligibility criteria.

Of 145,526 subjects in Lifelines potentially eligible for this study, about 700 
reported a cancer diagnosis after the baseline visit at the 18-mo follow-up visit. We 
randomly selected 261 cases in the case arm that self-reported a cancer diagnosis 
at a follow-up visit 18 mo after the baseline visit (capping to n = 50 the maximum 
number of subjects with a given self-reported cancer type), and we pseudo-ran-
domly selected 110 age-, sex-, and biochemistry-matched subjects that stayed 
cancer-free through the follow-up visit. Biochemistry matching was performed on 
CRP, ALP, calcium, hemoglobin, and neutrophile/thrombocyte/lymphocyte count 
distribution. We performed a linkage with the Dutch Cancer Registry to a) verify a 
cancer diagnosis within 18 mo after the baseline visit in 171 (66%) subjects in the 
case arm (thus excluding 90 unverified cases), of which 35 (20%) were diagnosed 
within 3 mo after the baseline visit and 107 (63%) were diagnosed with stage 0-II 
disease (of which 22 (21%) within 3 mo after the baseline visit) and b) retrieve 
further information on the cases, specifically: the time between the baseline visit 
and cancer diagnosis, the diagnosed cancer type, and the TNM stage at diagnosis.

We focused on the combined free GAGome MCED score since it reported the 
highest AUC in the development study. To reduce the odds of overfitting and further 
increase the robustness and generalizability of the model, we opted to repeat the 
variable selection procedure in the development study limited only to independently 
measured GAGome features, that is measured in semi-absolute concentrations 
(μg mL−1), which are less susceptible to technical variation. Using the default sug-
gested model size, we produced a pruned combined free GAGome MCED score 
consisting only of five features with minimal loss of performance metrics in the devel-
opment study (plasma 0S CS, 0S HS urine, NS HS urine, 4S CS urine, 6S CS urine).

The statistical analysis of the diagnostic performance for the pruned score 
was performed as described for the development study. Correlation between 
blood chemistry biomarkers and the pruned scores was computed using the 
Kendall correlation coefficient with a permutation test to assess the corresponding 
P-value adjusted for multiple testing using the Holm correction (correlations with 
adjusted P < 0.05 were considered significant). Score performance was assessed 
using AUROC and sensitivity at 95% and 99% specificity across different patient 
subsets. All computations were performed in R (4.0.4).

Mouse Experiment. The experiment was carried out by Oncodesign 
Biotechnology (Dijon, France) under AAALAC accreditation following approval 
from the institutional Ethical Committee (ref: 2016041218566820). In short, 28 
female BALB/c (BALB/cAnNCrl) mice, 5–6 wk old at reception, were used in the 
experiment—3 as controls. RenCa tumors were induced on day zero (D0) ortho-
topically on 25 female BALB/c mice under anesthesia, wherein five mice were 
used to replace eventual dropout during the experiments. The animal abdomen 
was opened through a median incision under aseptic conditions. 5 × 105 murine 
renal adenocarcinoma (RenCa) tumor cells (American Type Culture Collection, 
USA), in 25 μL of Roswell Park Memorial Institute medium, were slowly injected 
in subcapsular space of the left kidney. At day seven (D7), the abdomen of mice 
was opened and the kidney containing injected RenCa cells was resected.

Blood was collected from 20 mice at each timepoint. Dropouts due to compas-
sionate termination were replaced. Blood (50 μL per sample) was collected into K2 
EDTA tube by jugular venipuncture. Intracardiac blood collection was conducted as 
a terminal procedure under deep isoflurane gas anesthesia. Blood was collected 
from animals at the following timepoints on day 1 (24 h before engraftment), day 
6 (24 h before kidney resection), day 8 (24 h after kidney resection), and day 20 
(day of mice termination). Therefore, each mouse generated up to four plasma 
samples. Blood was collected into collection tubes with anticoagulant (K2 EDTA). 
Tubes were centrifuged (2000 RCF, 10 min, room temperature) to obtain plasma. 
Plasma samples were stored in polypropylene tubes at −20°C until shipment.

Urine was collected from the same 20 mice split in ten metabolic cages. 
Dropouts due to compassionate termination were replaced. The animals were 
kept in metabolic cages for the collection of pooled urine of two mice per cage 
for 24 h at + 4°C. All urine was collected from animals at the following timepoints 
from day 1 to day 2 (24 h before OT engraftment), day 5 to 6 (24 h before kidney 
resection), day 7 to 8 (24 h after kidney resection), and day 19 to 20 (24 h before 
mice termination) in polypropylene tubes and stored at −20°C until shipment. 
Each group of two mice generated four urine samples. All surviving mice were 
terminated on day 20 as described above. At day of termination, the lung from 
all mice was collected and weighted. In addition, macroscopic lung metastases 
count (if possible) was performed in each mouse.

Plasma and urine GAGome features were subsequently measured from each 
timepoint (baseline: day 1 to 2; localized growth: day 5 to 6; post-operative resec-
tion: day 7 to 8; metastasis: day 19 to 20). Scaled and centered features were used 
for principal component analysis and labeled according to the timepoint of each 
sample. We also visualized the difference in GAGome features in individual mice 
across timepoints by plotting the values and fitting a loess regression curve to each 
one. For each individual standardized GAGome feature, in either urine or plasma, 
we estimated the population level change with time using a Bayesian mixed 
effects regression model. We set the sampling timepoint as a fixed effect and 
each mouse as a random effect. Missing or incomplete data at a given timepoint 
were omitted (specifically, only urine samples where both mice in a cage were 
alive at a given timepoint were used). Posterior samples were used to estimate the 
percentage difference in GAGome feature levels between individual timepoints 
and baseline. 95% credible intervals for the percentage differences were also 
calculated based on the posterior samples. Bayesian estimation was carried out 
using the brms (2.14.4) and tidybayes (2.3.1) packages in R (4.0.4).

Code Availability. A synthetic dataset with standardized GAGome values and code 
for the development of free GAGome MCED scores by projection predictive variable 
selection is deposited at: https://github.com/SysBioChalmers/GAGome-MCED.

Data, Materials, and Software Availability. The data used in this study are 
not publicly available because they use clinical records protected by patient 
confidentiality. Requests for access to de-identified data can be directed to the 
corresponding author. Data that can be shared can be released via a material 
transfer agreement.D
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