
Abstract
Nitric oxide (NO) is a small biological arbitrator and signaling molecule that has numerous significant biological roles in our body. 
Most of the neurons produce NO by neuronal nitric oxide synthase (nNOS). NO has been involved in the regulation of neurogenesis, 
synaptic plasticity, learning, and memory. Also, it contributes to the regulation of circulation and synapses, cerebral map formation, and 
neuropeptides. In the current review, we focused on previous research that has demonstrated structural aspects, subcellular localization, 
and some factors that adjust nNOS function. Furthermore, we have characterized the effect of nNOS in the brain in some physiological 
situations, particularly long-term potentiation and depression (LTP and LTD) and neural plasticity during development . Moreover, the 
effect of NO on neuropeptidergic neurons, including orexin, in reward systems was reviewed. Also, this study has focused on the NO 
involvement in brain circulation, the excitability of neurons, and the homeostatic balance of excitatory and inhibitory signaling in the brain.
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Introduction
Nitric oxide (NO) is a small biological mediator that plays 
many significant biological roles in our body (1). Though 
it is a short-lived messenger with two main roles in our 
body: adjustment and cytotoxicity. Low levels of NO 
show regulatory and cytoprotective properties, while high 
levels will be destructive by producing cytotoxic effects 
(2). NO, as a neuromodulator, regulates sleep, neural 
secretion (3), synaptic plasticity (4), body temperature, 
neural development (5), and gene expression (6).

Diverse NOS types have been demonstrated to adjust 
diverse physiological roles. Different types of NO 
synthases including neuronal, inducible, and endothelial 
ones have been explained in Table 1. NO creation from 
neuronal nitric oxide synthase (nNOS) in the central 
nervous system is related to an extensive array of 
cerebral proficiencies and efficient controls, including 
neurosecretion, cognitive roles, cerebral circulation, 
neurogenesis, synaptic plasticity, appetite, sleep, and 
body temperature (7).

In preceding research, injection of sodium 
nitroprusside, as an NO donor, inside the nucleus raphe 
magnus (NRM), the thermoregulation center in rats, 
prohibited thermal constriction of vessels of rat tail in 
cold exposure. Furthermore, intra-NRM injection of 
lidocaine reduced the blood flow in hypothermia (13,14). 
In sum, NO modifies skin blood flow in the NRM of rats 

in hypothermia (14).
In addition, in the nucleus tractus solitarius (NTS) nitric 

oxidergic neurons have been established to adjust blood 
pressure. Baroreceptor fibers inside the NTS synapse with 
the rosteroventrolateral part of the medulla through nitric 
oxidergic fibers. It was reported that NTS inactivation 
increased diastolic pressure (15,16). Moreover, released 
NO inside the cerebellum produces dilation of vessels by 
exciting stellate cells that express nNOS (17). 

Raphe magnus is a center of regulation of the 
cardiovascular system. Raphe projections to the medulla 
cause an extra substrate for inducing autonomous 
activity over changes of preganglionic neurons of the 
parasympathetic system, premotor neurons of the 
sympathetic system, and visceral sensory inputs. Electrical 
or chemical stimulation can induce both depressor and 
pressor reactions with little indication of any functional 
organization within different raphe nuclei (18). Raphe 
regulates skin blood flow via sympathetic activation 
(14,19).

nNOS regulating factors
Phosphorylation of nNOS is vital for the enzyme activity 
that is controlled by some kinases and phosphatases 
such as calmodulin-dependent kinases, PKA, PKC, and 
phosphatase 1, which are modified by extracellular and 
intracellular factors (20).
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Calmodulin acts as an allosteric activator of NOS that 
simplifies electron current transferring from NADPH 
to the reductase domain flavins and from the reductase 
domain to the heme center. Calmodulin binding is 
brought about by a surge in intracellular Ca2 + (21,22).

Hsp90 can intensify the binding of calmodulin to 
nNOS that activate nNOS. Therefore, nNOS–HSP90 
binding augments the production of NO. However, in 
skeletal muscles, caveolin-3 diminishes NO synthesis by 
inhibition of Ca-CaM binding, and so this inhibition is 
reversed by Ca-CaM (1). 

Another factor is NOSIP (nitric oxide synthase 
interacting protein) which inhibits the production of 
NO (23). NOSIP and nNOS are located in different areas 
of the central and peripheral nervous systems. NOSIP 
negatively affects nNOS activity in a neuroepithelioma 
cell line stably expressing nNOS (23).

Nitric oxide and regulation of synapses in development 
Nitric oxide can control the synchronization of metabolic 
states, electrical coupling, and direction of transcriptional 
activity among linked neurons (24). Gap junctions allow 
neurons to connect with others more quickly. Hence, 
NO controls the electrical synapses through gap junction 
coupling between neurons (25).

Gap junctions associate electrical and metabolic 
synapses between glutamatergic and GABAergic neurons 
of the neocortex. The synchronization among excitatory 
and inhibitory signaling is important for preserving 
the equilibrium between excitatory and inhibitory 
signaling in the brain. nNOS is the most dominant NO-
producing interneurons of the hippocampal neurons. 
It can decrease glutamate (26) or GABA release (27) 
presynaptically through second messenger cGMP. NO 
is a weak polar molecule that can diffuse simply through 
cell membranes. Though NO shows a high reactivity in 
a few micrometers, it may display synapse specificity for 
regulating presynaptic roles (28). 

According to some studies, the release of 
neurotransmitters in the synapses including acetylcholine, 
glutamate, GABA, and catecholamines is moderated by 

NO in the striatum, hypothalamus, locus coeruleus, and 
hippocampus (26). 

Some glutamatergic synapses during postnatal 
development are silent because they consist of N-methyl-
D-aspartate (NMDA) receptors that mainly induce 
hyperpolarization and inhibitory roles (29). In the locus 
coeruleus neurons that receive glutamatergic innervation 
from paragigantocellularis nucleus (30-32), injection 
of NO donor potentiates the memory induction (33). 
Coordinated injection of nitroprusside and glutamate 
proved a reverse outcome, and so the neurons showed 
depolarization and excitation (34). These consequences 
revealed that NO participates in changing inhibitory 
reactions to glutamate, and it may be intermediated by 
NMDA receptors (29).

Nitric oxide and orexin neuropeptide synthesis 
regulation 
The previous reports showed that NO makes 
degeneration of orexinergic neurons of the hypothalamus 
through inhibition of protein disulfide isomerase (35). 
Orexin peptides are formed in the lateral portion of the 
hypothalamus that affects postsynaptic neurons through 
two G-protein-coupled receptors (36,37). In the rostral 
ventrolateral medulla (RVLM), orexin might contribute 
to the central directive of cardiovascular functions, and 
both of its receptors are vitally involved in this process. 
The cardiovascular roles of orexin in the RVLM can 
be produced by nNOS-derived NO, which triggers 
guanylate cyclase-associated signaling pathways (38). It 
is discovered that the continuing inhibition of orexin 1 
receptors may alter the phospholipase Cβ3 (PLCβ3) in 
the hippocampus, and hence may inhibit the formation 
of memory (39). Orexin may enhance the PLCβ3 level in 
most regions of the rat hippocampus (40). In addition, 
the blockade of orexin receptor 1 is involved in the 
progress of morphine addiction through the reduction 
of cAMP-response element-binding protein and PLCβ3 
(41). Furthermore, it was revealed that the continued 
inhibition of the orexin receptor might contribute to 
formalin-induced nociceptive behaviors (42).

Table 1. Different types of nitric oxide synthase

Type Place of function Controlling factor Functions References

Neuronal nitric 
oxide synthase

Cerebral cortex, nucleus 
accumbens, striatum, 
amygdala, CA1, dentate 
gyrus, paraventricular nuclei, 
raphe magnus, nucleus of the 
solitary tract, cerebellum

Phosphorylation CaM/Ca2 + 

PDZ domains

Synaptic plasticity,
learning, memory neurogenesis
central blood pressure regulation,
fine-tuning synchronous network activity 
in the developing hippocampus, coupling 
between increased neuronal activity and 
local blood flow

(8)

Inducible nitric 
oxide synthase

Glial cells, Macrophages CaM/Ca2 + 

Blood pressure regulation, inflammation, 
infection, and the onset
Ca + 2-independent Immune system, Pain

(9-11)

Endothelial nitric 
oxide synthase

CA2 and CA3, granule cells 
of the dentate gyrus
Vascular endothelial cells

Phosphorylation, CaM/ Ca2 + 

Ca + 2-dependent Vasodilation, Pain, 
Prevention of atherosclerosis
Vasoprotection

(9,10,12)
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Neurogenesis neuronal developmental effects of NO 
Nitric oxide has been involved in neurogenesis and also 
in the progressive stages, including synaptogenesis and 
formation of the neural map in neuronal differentiation 
(43).

Neurogenesis is detected throughout the development 
of the brain and likewise in brain damages such as stroke 
and seizures. Though adult neurogenesis is controlled by 
numerous endogenous neurotransmitters like glutamate, 
serotonin, and NO, it is revealed that NO performs as 
a paracrine messenger in newly formed neurons; NO 
contributes to the regulation of differentiation and 
proliferation in mouse brain neural progenitor cells (43).

It has been proposed that neuronal NO negatively 
regulates neurogenesis (44). NO regulates the extent of 
the undifferentiated precursor pool and increases the 
differentiation of neurons in two main neurogenesis 
places in the adult brain, the sub-granular zone and the 
sub-ventricular zone of the dentate gyrus. So, it is an 
inhibitor of neurogenesis physiologically (45). 

Some studies have shown that regulatory effects of NO 
take place through EGF downstream signaling pathway 
and augment Ras-GTP activity, which might produce a 
proliferation of cells by the trigger of mitogen-activated 
protein kinase ERK1/2 (46). Exogenous NO may 
negatively cause the proliferation of neural stem cells 
(NSCs) and hence downregulates the expression of nNOS 
in NSCs via dropping cAMP-response element-binding 
protein phosphorylation (44).

Effect of NO on the excitability of neurons 
The excitability of neurons is regulated through the 
location, expression, and action of voltage-dependent 
ion channels inside the plasma membrane. Na + and 

Ca2 + channels comprise two main channels that 
induce action potential, while the vital controllers of 
excitability are voltage-dependent potassium channels 
(47). The pattern of action potential firing depends on 
the interaction of voltage-dependent ion channels. The 
action potential is the essential signaling mechanism that 
activates the synaptic transmission in axon terminals. 
Synaptic transmission is classified according to the 
calcium amount entering the presynaptic terminal (48). 
Alterations of the voltage-gated Na + and K + channels 
elucidate the dynamic shift of a neuron between the low 
and high-frequency firing (49).

Continued duration of open channel was detected 
for the gathered channels, which shows the changes in 
activation gating (50,51). Selective permeation of sodium 
ions through voltage-dependent sodium channels 
is important to the induction of action potentials in 
excitable cells like neurons. Depolarization of the neuron 
leads to activation and inactivation of sodium channels 
within milliseconds. The entry of sodium ions over the 
integral membrane proteins containing the channel 
depolarizes the membrane more and recruits the rising 
phase of the action potential (52). The main function of 
sodium channels is to permit the propagation of action 
potentials (53).

The conductance of ion channels is regulated 
by K + channels (54), Ca2 + channels (55), and 
hyperpolarization-activated cyclic nucleotide-gated 
channels (56). The effect of NO on ion channels in 
glutamatergic synapses has been shown in Figure 1.

Effects of NO on learning and memory 
Long-term potentiation (LTP) and long-term depression 
(LTD) are processes of strengthening and weakening 

Figure 1. The effect of NO in glutamatergic synapses on ion channels. NMDA receptor activity produces NO that phosphorylates the potassium channels
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the synapses, respectively (57), and are supposed to 
have a central effect on the modification of cortical 
circuits (58,59). Moreover, LTP may reduce or inhibit 
coordinated activity in inhibitory synapses of cortical 
neurons (59). The effect of NO on LTP in glutamatergic 
synapses has been shown in Figure 2.

Nitric oxide can be released from activated CA1 
pyramidal neurons in the hippocampus. Previous 
studies have also recognized the presence of nNOS 
protein trace in populations of GABAergic interneurons 
(60-62). Some studies proved NO roles in modulations 
of synaptic plasticity, including production of LTP in the 
hippocampus and cerebral cortex and production of LTD 
in the striatum and cerebellum (63-67). 

Nitric oxide generation is accomplished in presynaptic 
terminals that activate postsynaptic actions or 
interneurons, persuading LTD in the cerebellum and 
striatum. Furthermore, NO can act like a retrograde 
messenger that is produced in postsynaptic neurons and 
have some effects on presynaptic terminals to induce LTP 
in the hippocampus and cortical area (68,69).

Nitric oxide synthase is expressed as a result of the 
postsynaptic NMDA receptors activation in pyramidal 
cells of the adult hippocampus. The resulting NO like a 
retrograde messenger regulates the production of LTP at 
the Schaffer collateral/CA1 synapses (70,71). However, 
NO is formed in parallel fiber terminals of cerebellar 
interneurons and diffuses into the postsynaptic Purkinje 
cell, finally leading to the LTD induction (72). While NO 
shows irregular postsynaptic actions in the hippocampus 
(73) and can make an acute augmentation of synaptic 
efficacy, it shows the presynaptic action for longer times 
(74,75). NO may lead to the synchronous network activity 

in the hippocampus during development because NO 
signaling diminishes the GABAergic and glutamatergic 
postsynaptic currents (27). Interruption of this balance 
results in pathological disorders such as autism, epilepsy, 
and schizophrenia (75,76).

Effects of NO on cerebral maps formation
Neuronal nitric oxide synthase and NO show a central role 
in brain development through the regulation of synapse 
formation and patterning, (24,27,77,78). They involve 
in the procedure of the activity-dependent modification 
of axonal growth, stabilization, and consolidation of the 
developed synapses (79,80). 

Also, they involve in neuronal communication and 
activating a shift from proliferation to differentiation 
of cells during neurogenesis (78,81,82). The underlying 
signaling of map formation in the development of the 
brain is difficult to know. Some structures of the embryo-
like signaling centers of the boundaries of the tissues 
release signaling proteins. These proteins regulate zonal 
growth and specify local character in the tissue.

Several models have been proposed for map formation. 
In one of the models, signaling proteins diffuse through 
the tissue and create a gradient that exhibits the positional 
information (83). In another model in the developing 
spinal cord, Wingless-tnt (WNT) 1 and 3a produce a 
gradient of proteins based on their concentration, one of 
which synchronizes the growth of tissue (84).

Nitric oxide as a neurotransmitter involves in the 
development of cerebral maps. It causes synaptic 
enhancement or abolition of immature synaptic 
connections at retino-thalamic and retino-collicular 
planes in the visual system (85). Evidence shows that NO 
plays an important role in creating patterned neocortical 
maps. For example, nNOS knockout mice show the 
normal organization of the somatosensory cortex and 
barrel field plasticity (86,87).

Nonetheless, NO involves in launching and refining 
neocortical connectivity, since NO may promote 
thalamocortical development and contributes to the 
consolidation of synaptic strength in layer IV of the 
primary somatosensory cortex (24). 

As formerly described, NO similarly may affect the gap 
junction coupling of neurons (88,89). In glutamatergic 
or GABAergic neurons of the developing neocortex, 
metabolic and electrical communication is completed 
by gap junctions. Therefore, the regulatory effects of 
NO in the regulation of gap junctions permit it to affect 
electrical coupling, coordination of metabolic states, 
and transcriptional activity between associated neurons 
during the development of the brain (24). Despite this 
evidence, detecting the specific roles that NO and nNOS 
play in the development of the brain requires additional 
research. 

Both excitatory and inhibitory effects of NO in different Figure 2. The impact of NO on LTP in glutamatergic synapses
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areas of the brainstem are caused by direct actions of NO 
on neurons and/or by NO-mediated alteration in local 
cerebral blood flow. Through cyclic 3′, 5′-guanosine 
monophosphate (cGMP)-dependent mechanisms, NO 
modulates neuronal activity. In the ventrolateral medulla 
(VLM) and the nucleus of the solitary tract (NTS), which 
are located in the lower brain stem, NO modifies several 
central and reflex-activated neuronal pathways. NO-
mediated modulation of autonomic function is strictly 
reduced in cardiovascular diseases (90). Microinjection 
of superoxide dismutase into the RVLM reduced 
sympathetic activity, whereas peroxynitrite, an important 
mediator of NO-related oxidative stress, had excitotoxic 
impacts (91). Antagonism of neuronal NOS shows a 
new therapeutic method to counteract neurohumoral 
activation in hypertension and heart failure (92).

NO involvement in brain vessels and blood circulation
When NO donor is injected into cortical slices causes 
vasodilation, this effect may likewise promote electrical 
stimulation through nNOS expressing interneurons 
of the cortex in that zone (93). Relation between the 
vasodilatory and neuronal activity of interneurons 
expressing nNOS has also been detected in other brain 
areas, like the cerebellum (17). By this adjustment of brain 
blood perfusion, most nNOS interneurons co-release 
neuropeptide Y (NPY) which is a strong vasoconstrictor 
(94). Hence, it seems that both nerve growth factors of 
the cortex and hippocampus which co-express NPY 
and nNOS may show dual regulatory roles over cerebral 
blood flow. Neuropeptide Y is probably released at axon 
terminals and regulates the tonicity of blood vessels 
distant from the cell body, whereas NO is produced by 
the somatodendritic section and affects more proximally 
through volume transmission (24).

Parasympathetic nerves send nitroxidergic innervation 
to the blood vessels of forebrain cerebral area. Released 
NO from parasympathetic nerves makes vasodilatation 
of cerebral vessels during hypertension (95). NO 
exhibits a main effect in the regulation of cerebral 
blood flow (CBF) at rest and during physiological and 
pathological stresses. eNOS-NO shows an important role 
in autoregulation, while nNOS-derived NO is critical for 
neurovascular coupling (96). NO is a vital moderator 
of cerebral vasodilatation in response to alteration of 
the physiological parameters during hypercapnia and 
hyperoxia; however, the role of NO in the regulation 
of evoked cerebral blood flow remains to be elucidated 
(97). NO provides a potential target for new therapeutic 
opportunities against several neuroendocrine and 
behavioural abnormalities (98).

Pathophysiological functions of nNOS 
Abnormal NO signaling contributes to some 
neurodegenerative pathologies including excitotoxicity 

following stroke, Alzheimer’s and Parkinson’s diseases 
and multiple sclerosis. Under these conditions, NO can 
contribute to excitotoxicity, perhaps by peroxynitrite 
activation of PARP and/or mitochondrial permeability 
transition. High levels of NO can also yield energy 
depletion, caused by inhibition of mitochondrial 
respiration and glycolysis. Some disorders of 
smooth muscle tone in the gastrointestinal tract (e.g. 
gastroesophageal reflux disease) may also be derived 
from an extreme NO production by nNOS in peripheral 
nitrergic nerves (99). 

A central mode of inactivation of NO is its reaction 
with the superoxide anion which forms the potent oxidant 
peroxynitrite. This can make oxidative damage, nitration, 
and S-nitrosylation of biomolecules including proteins, 
lipids, and DNA (100). Nitrosative stress caused by oxidant 
peroxynitrite contributes to DNA single-strand breakage, 
followed by poly (ADP-ribose) polymerase activation 
(101). 

Previous study results demonstrated that demyelination 
was mainly prevented in mice lacking nNOS. Protection 
enhances mature oligodendrocyte survival and diminishes 
apoptosis. In eNOS-/- mice, demyelination increased to 
the same level as in the wild type, but they showed a slight 
delay in spontaneous remyelination (102). 

nNOS as a Ca2+-sensitive enzyme exhibits a major role 
in excitotoxicity. In primary cortical neuronal cultures 
of nNOS-/- mice, these neurons exhibit resistant to 
NMDA neurotoxicity and to oxygen-glucose deprivation 
compared with wild-type cultures. These studies in vitro 
show that nNOS-derived NO is the principal source of 
neurotoxicity in neurons (1). 

Ischemia activates a pronounced augmentation in 
citrulline immunoreactivity, but more so in a large 
population of the neuronal isoform of NO synthase in the 
peri-infarct rather than the infarcted tissue. In contrast, 
3-nitrotyrosine (a marker for peroxynitrite formation) is 
confined to the infarcted tissue and is not present in the 
peri-infarct tissue. In addition, nitric oxide production 
is induced in a number of immune cells, including 
neutrophils and macrophage/monocyte lineage (103).

Moreover, overexpression of nNOS was shown in 
basal ganglia and the respiratory burst of circulating 
neutrophils of Parkinson’s disease patients. At the same 
time, NO production and protein tyrosine nitration were 
also significantly enhanced. Based on these observations, 
it is conceivable that nNOS exhibits a key role in the 
pathogenesis of Parkinson’s disease. Therefore, a better 
perception of nNOS involved in Parkinson’s disease is 
required (99).

All three isoforms of NOS are elevated in Alzheimer’s 
disease, indicating an important role for NO in the 
pathomechanism of Alzheimer’s disease. Given an 
impressive amount of isoform-specific NOS inhibitors 
could be useful for Alzheimer’s disease treatment (99). 
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Conclusion
Nitric oxide contributes to the regulation of the neurons 
in the circulatory system, brain blood flow, neurogenesis, 
neuron excitability, modulation of electrical and chemical 
synapses in development, cerebral map formation, and 
neurovascular coupling for regulating neocortical blood 
flow. Moreover, NO involves in the homeostatic balance 
of excitatory and inhibitory signaling in the brain, LTP, 
LTD, neuronal plasticity, learning and memory, and 
control of the blood flow in the central nervous system.
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