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Ferroptosis: the potential value target in atherosclerosis
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In advanced atherosclerosis (AS), defective function-induced cell death leads to the formation of the characteristic necrotic core and
vulnerable plaque. The forms and mechanisms of cell death in AS have recently been elucidated. Among them, ferroptosis, an iron-
dependent form of necrosis that is characterized by oxidative damage to phospholipids, promotes AS by accelerating endothelial
dysfunction in lipid peroxidation. Moreover, disordered intracellular iron causes damage to macrophages, vascular smooth muscle
cells (VSMCs), vascular endothelial cells (VECs), and affects many risk factors or pathologic processes of AS such as disturbances in
lipid peroxidation, oxidative stress, inflammation, and dyslipidemia. However, the mechanisms through which ferroptosis initiates
the development and progression of AS have not been established. This review explains the possible correlations between AS and
ferroptosis, and provides a reliable theoretical basis for future studies on its mechanism.
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FACTS

1. Endothelial cell ferroptosis is an initiating factor in athero-
sclerosis.

2. Gpx4 is a key player in the regulation of ferroptosis and
atherosclerosis.

3. Increased lipid peroxides caused by ox-LDL accumulation
within atherosclerotic plaques is a dominant condition for
the onset of ferroptosis.

OPEN QUESTIONS

1. Where are the sources of iron that influence atherosclerosis
and how is the excess iron metabolized when ferroptosis
occurs in atherosclerosis-related cells?

2. What is the relationship between lipid peroxidation that
causes ferroptosis and those formed by ox LDL in
atherosclerotic plaques?

3. Does the interplay between autophagy and ferroptosis have
any effect on atherosclerosis?

4. Does ferroptosis-induced cell death affect the whole process
of atherosclerosis?

5. Is there a relationship between iron metabolism and lipid
metabolism in atherosclerosis?

INTRODUCTION
Ferroptosis is a regulated form of cell death attributed to
abundant cellular iron levels that lead to an imbalance in the
production and clearance of lipid peroxides [1]. It is induced by
erastin and ras-selective lethal small molecule 3 (RSL3) while its
prevention is by iron chelators [2]. Ferroptosis is enhanced by the
accumulation of lipid peroxides due to Fe2+-mediated Fenton
reactions and reactive oxygen species (ROS) [3]. Glutathione
peroxidase 4 (GPX4), a major lipid repair enzyme, scavenges for
toxic lipids to block ferroptosis [1, 4]. AS is a type of peripheral
vascular disease associated with toxic lipid accumulation in the
walls of medium and large-sized arteries [5]. The pathogenesis of
AS also involves dysregulated iron metabolism [6], decreased
glutathione peroxidase (GPX) levels [7], and increased ROS [8] in
AS-associated cell macrophages, VSMCs, and endothelial cells
[9–11]. Notably, it has been preliminarily proved that ferroptosis
mediates angiogenesis in AS [12]. Thus, this review further
elucidates on the relationship between ferroptosis and AS-
related risk factors and regulators, which may be harnessed using
therapeutics to improve lesion regression.

IRON-DEPENDENT FERROPTOSIS AND AS
Effects of iron transport and storage on AS
Ferritin is the main iron storage protein in the cell. It is composed
of a spherical shell cavity structure formed by two subunits, heavy
chain and light chain [13]. The heavy chain exhibits ferrous
oxidase activities that oxidize Fe2+ to Fe3+ which is then stored in
ferritin to avoid the oxidative stress attributed to Fe2+-mediated
Fenton reactions, and maintain intracellular iron homeostasis
to prevent cellular damage and death. Upon excessive degrada-
tion of ferritin, elevated intracellular labile iron levels enhance
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sensitivity to ferroptosis [14], implying that ferritin regulates
ferroptosis by binding excess iron to avoid oxidative damage [15].
Ferritin-mediated iron homeostasis plays a beneficial role in the

cardiovascular system [16, 17]. Ferritin is a biomarker for non-fatal
cardiovascular disease (CVD), especially among individuals with
hyperlipidemia [18]. Elevated plasma ferritin concentration is a
biomarker for early coronary heart disease (CHD), while abnor-
mally elevated ferritin levels promote early atherogenesis and its
associated complications [19–21]. These effects are attributed to
dysregulated iron homeostasis [15, 21]. Iron metabolism can also
be used to monitor the risk of AS in offspring. In a survey of
carotid intima-media thickness (cIMT) among children, circulating
ferritin levels were independently correlated with the changes in
carotid intima-media thickness, especially among children whose
father exhibited higher ferritin levels [22]. Surprisingly, Mendel’s
random analysis showed that an increase in ferritin saturation
following an increase in serum iron levels was correlated with a
decrease in CHD risk [23], which may be attributed to the
possibility of reverse causality bias. Ferritin and LDL cholesterol
exert a synergistic effect on CVD [24].
Transferrin receptor 1 protein (TFR1), a crucial ferroptotic

protein that accelerates iron uptake and ferritin synthesis, is
significantly accumulated in the nuclear regions of many foamy
cells. In atherosclerotic lesions, it contributes to the develop-
ment and rupture of human carotid atheroma [25, 26]. There-
fore, ferritin and TFR1 are important ferroptotic targets for the
prevention of AS.

Hepcidin regulated ferroportin affects AS
Hepcidin, a hormonal regulator of iron homeostasis, accelerates
erastin-induced ferroptosis by increasing intracellular iron levels.
This is attributed to the conformational change and degradation
of ferroportin (FPN) [27, 28]. In the human aortic wall, hepcidin
activates the TLR4/NF-κB pathway to initiate hepcidin autocrine-
induced iron retention in murine macrophages [9], and enhances
inflammation-mediated AS [29]. In a murine model, overexpressed
Hamp, the gene encoding hepcidin, was shown to enhance the
development of AS [30, 31]. Hamp−/−Ldlr−/− mice exhibited low
iron levels in aortic macrophages and decreased aortic macro-
phage activities [30]. In addition, interleukin-6 (IL-6)-induced
overexpression of hepcidin is involved in immune responses and
promotes AS [32–34]. However, it has not been established
whether IL-6 affects iron metabolism through hepcidin to enhance
AS progression.

EFFECTS OF FERROPTOSIS-ASSOCIATED ROS ON AS
Elevated ROS levels enhance cell sensitivity to ferroptosis. This is
attributed to elevated intracellular iron concentration, depletion of
the antioxidant glutathione (GSH), or excessive AS inducer ox-LDL,
which result in the accumulation of intracellular lipid peroxides
[1, 35]. In the cardio-cerebral vascular system, ROS-induced
phospholipid oxidation is mainly upregulated during ischemia/
reperfusion (I/R) injury, which is an acute vascular ischemic event
that is caused by atherosclerotic plaques, such as coronary artery
stenosis and ischemic attack [36–39]. Therefore, the accumulation
of ROS in AS pathologies can affect phospholipid metabolism
[40, 41]. To a certain extent, elevated lipid-based ROS-induced
ferroptosis has been implicated in pathophysiological processes of
AS [1, 12].

Ferroptosis-associated lipoxygenases (LOXs) mediate AS
Lipoxygenases (LOXs), including 15-lipoxygenase (15-LOX) and 12-
lipoxygenase (12-LOX) are the key enzymes for ROS production.
They are mainly expressed in macrophages after induction by IL-4,
LPS, and hypoxia [42]. The overexpression of LOXs enhances
ferroptosis and AS pathogenesis [43, 44]. Inhibition of 15-LOX
significantly suppressed ox-LDL deposition in the subendothelial

space and attenuated AS development. This is because it was
mainly engaged in the synthesis of bioactive lipid mediators [44].
Moreover, 15-LOX inhibitors prevent erastin, RSL3, and
arachidonate-15-lipoxygenase (ALOX15) induced ferroptosis,
which is correlated with increased formation of lipid peroxides
[2, 45]. ALOX15B was found to encode for an enzyme associated
with the development of atherosclerotic plaques in humans and in
a mouse model of hypercholesterolemia. It is involved in
intracellular cholesterol metabolism, such as that of cholesterol
intermediates desmosterol, lanosterol, 24, 25-dihydrolanosterol,
and oxysterols in interleukin-4(IL-4)-stimulated macrophages [46].
Erastin-induced ferroptosis can be inhibited by ALOX15B silencing
[45]. Similar to ALOX15, ALOX12 exhibits higher methylation levels
in AS plaques, especially in endothelial cells [47], which is essential
for p53-mediated ferroptosis after stress [48]. The implicated LOXs
are closely correlated with ferroptosis-mediated AS. More studies
are needed to determine whether LOXs directly lead to cell
ferroptosis in atherosclerotic plaques and whether they affect
lesion formation.

ROS-induced oxidized phospholipids in AS
Oxidized phospholipid (OxPL), an ROS-induced product,
enhances the risk factors for AS, including endothelial dysfunc-
tion [49], foam cell formation [50], abnormal proliferation, and
ectopic migration of VSMCs [53]. It also acts as a proinflamma-
tory mediator in atherosclerotic lesions [51, 52]. Studies have
shown that OxPL combinate with immunoglobulin M (IgM)
natural antibody E06 significantly inhibited AS in Ldlr−/− mice,
which appeared in the ameliorated aortic valve gradients and
the decreased aortic valve calcification, by blocking ox-LDL
uptake and suppressing the pro-inflammatory property of OxPL
in macrophages [51]. These findings confirm the major
proatherogenic role of OxPL. The accumulation of phospholipid
hydroperoxides caused by GPx4 catalytic barrier in the
endoplasmic reticulum (ER) is involved in ferroptosis [53, 54].
The phospholipid metabolism disorder may be a bridge
between ferroptosis and AS. Elucidation of the roles of
phospholipids in the pathogenesis of ferroptosis-induced AS
will establish the relationship between AS and ferroptosis, and
they could be potential disease biomarkers and novel ther-
apeutic targets in AS-CVD.

Mono-unsaturated fatty acids regulate lipid ROS-induced
ferroptosis and AS
At the plasma membrane, mono-unsaturated fatty acids (MUFAs)
suppress lipid ROS accumulation and inhibit ferroptosis in an acyl-
CoA synthetase long-chain 3 (ACSL3) dependent manner [55]. In
addition, supplementation with dietary MUFA was shown to
ameliorate glycolipid metabolism as well as inflammation and
inhibited AS development in Ldlr−/− mice [56]. However, MUFA
did not prevent AS in apolipoprotein E knockout (apoE−/−) mice [57].
The reason for this phenomenon may be that the LDL receptor-
related proteins mainly mediate lipoprotein clearance by the liver
when LDL receptors are absent, while the lack of apoE prevents the
normal diet-induced increase of very-low-density lipoprotein (VLDL)
production [58, 59]. Even though both AS and ferroptosis are
impacted by MUFA, it has not been established whether MUFA
mediated AS inhibition is associated with ferroptosis.

THE NOVEL ANTI-FERROPTOSIS ROLE OF GPX4 IN
ELIMINATING LIPID PEROXIDATION IN AS
Once selenoproteins are overexpressed, vascular endothelium
damage can be prevented in AS-associated cardiovascular
diseases [60]. Therefore, selenoproteins are involved in AS
formation and development. Mutations in selenoprotein genes
constitute a risk factor for peripheral AS [61]. Glutathione
peroxidases (GPx), including GPx1 and GPx4, are mammal
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selenoproteins that protect cells from oxidative reactions, and
prohibit inflammatory responses as well as oxidant-induced cell
death [62]. Among them, a GPx4 variant in the rs713041T allele
enhances the risks for aortoiliac occlusive disease (AOID) and
peripheral arterial disease (PAD) that result in atherosclerotic
occlusions [61]. Age-associated decrease in GPx4 expression has
shown that it is an important predictor of AS [63]. Intuitively, GPx4,
a hydroperoxide scavenger responsible for converting lipid
hydroperoxides into non-toxic lipid alcohols [64, 65], effectively
suppresses lipid hydroperoxides, including phospholipids, fatty
acids as well as cholesterols, decreases vascular endothelial cell
damage to oxidized lipids, and inhibits AS development. However,
GPx1 does not have the same effects as GPx4 [66, 67]. Therefore,
GPx4 plays a more important atheroprotective role than
GPx1 in AS.
In addition to being a unique intracellular antioxidant enzyme

[64, 68], GPx4 exerts resistance to ferroptosis by directly clearing
the peroxidized phospholipids located in the membrane [64],
diminishing hydroperoxy groups of complex lipids and extinguish-
ing lipoxygenases. Experimentally, GPx4 knockdown in a mesench-
ymal cell-line was highly correlated with sensitivity to ferroptosis
[69], while GPx4-deficient T cells rapidly accumulated lipid
peroxides, leading to ferroptosis [70]. These findings imply that
GPx4 plays an important ferroptotic role in the pathophysiologic
process of AS [7].
Selenium (Se), an essential component of selenoproteins, plays

a crucial role in AS by mediating GPx4 expression. Deficiency in Se
was shown to inhibit enzyme activity and mRNA expression levels
of cytosolic GPx, thereby increasing lipid peroxidation in bovine
arterial endothelial cells (BAEC) [71]. However, Se supplementation
enhanced GPx4 expression as well as activity and inhibited
oxidative stress in vascular endothelial cells or VSMCs [72, 73]. As a
component of GPx4, Se is required to prevent hydroperoxide-
induced ferroptosis [4]. In the presence of sufficient Se,
antioxidants that upregulate GPx4 can potentially reverse lipid
peroxidase-mediated atherogenic processes [74]. Statins such as
fluvastatin are widely used as lipid regulating drugs in AS. They
inhibit selenoprotein biosynthesis by preventing the production of
isopentenyl pyrophosphate through the mevalonate pathway [69].
Fluvastatin was shown to suppress GPx4 expression in a time- and
concentration-dependent manner, and exerted synergistic effects
with the direct GPx4 inhibitor, RSL3 [75]. In conclusion, Se-
mediated GPx4 affects the development of AS, and this process is
closely associated with ferroptosis.

FERROPTOTIC CELLS ARE INVOLVED IN AS
Ferroptosis-induced endothelial dysfunction aggravates AS
Endothelial dysfunction is an initial event in AS. Chronic iron
overload leads to endothelial dysfunction through ROS and
cyclooxygenase pathways that enhance the progression of AS in
apoE−/− mice, which may be attributed to an imbalance in
diastolic and contractile factors synthesized by damaged VECs
[6, 10]. Human umbilical vein endothelial cells (HUVEC) treated
with erastin exhibited a rapid generation of ROS and a reduced
viability. This process could be reversed by ferrostatin-1 (fer-1)
[76]. Furthermore, there is direct evidence that VEC ferroptosis
promotes AS by accelerating endothelial dysfunction during ROS-
mediated lipid peroxidation [12]. This implies that erastin-induced
VEC ferroptosis leads to endothelial dysfunction which is a risk
factor for AS.
ox-LDL induced VEC damage, which promotes AS, is

associated with ferroptosis. Mouse aortic endothelial cells
(MAECs) treated with ox-LDL or erastin had elevated ROS, lipid
peroxidation, and malondialdehyde (MDA) levels within the
damaged mitochondria. However, fer-1 could suppress the
generation of these peroxidation products, implying that ox-
LDL can induce ferroptosis in MAECs. Inhibition of ferroptosis

ameliorated ox-LDL-induced endothelial cell injury and lipid
peroxidation [12]. Fer-1 and iron chelator deferoxamine
mesylate, which plays the anti-ferroptotic role, rescued ferrop-
totic damage in endothelial cells and restored antioxidant
activity as well as iron metabolism [77].
Activating transcription factor 3 (ATF3) promotes lipid peroxida-

tion induced ferroptosis by suppressing system Xc− to depleting
intracellular GSH [78]. Surprisingly, ATF3 was found to be
significantly overexpressed in macrophages and endothelial cells
of human vascular walls with atherosclerotic plaques, but was
barely detectable in the non-atherosclerotic artery. It was
explicated in TUNEL-positive dead cells [79]. These findings imply
that macrophagic and endothelial cell death in atherosclerotic
plaques caused by ATF3 overexpression may be correlated with
ferroptosis. However, these results contrast with those found in
atherosclerotic plaques of apoE−/− mice. The overexpression of
ATF3, which is mainly expressed in macrophages and less in
endothelial cells, was shown to improve atherosclerotic plaques by
inhibiting phosphatidylinositol 3-kinase (PI3K)-matrix metallopro-
teinase 3 (MMP3) signal pathway, reducing elastic lamina damage,
increasing plaque stability [80], and protecting cells from Toll-like
receptor (TLR)-induced inflammation in vitro and in vivo [81].
Excluding species differences, this implies that elevated expression
of ATF3 in human AS may be due to the increase in the body’s own
protective responses rather than ferroptosis. Based on the current
studies, we cannot be certain as to whether ATF3-regulated
endothelial cell death at the transcriptional level promotes
ferroptosis mediated AS in response to atherogenic agents.

Associations between macrophage ferroptosis and AS
Ferroptosis influences the inflammatory phenotype in macro-
phages. AS refers to a chronic inflammatory pathogenesis in
the intima of the large and medium-sized arteries, where the
infiltrated inflammatory cells and macrophages are activated by
cytokines and oxidative stress [82]. It has been documented
that Fe promotes lipid peroxidation and GSH disulfide/total GSH
ratio in THP-1 macrophages [83]. Macrophages derived from
granulocyte-macrophage hematopoietic progenitor cells (GM-
HPCs), may be damaged by ferroptosis through the NADPH
oxidase 4 (NOX4)-ROS-P38-MAPK signaling pathway [84, 85].
Once there is an iron overload and exposure to ox-LDL and
lipopolysaccharide (LPS)/interferon-γ (IFN-γ) [86], the number of
M1 proinflammatory macrophages phenotype as well as
inflammatory responses increase [87]. However, compared to
M2 macrophages, M1 macrophages exert higher resistance to
pharmacologically induced ferroptosis in vivo. This is because
M1 macrophages maintain a higher level of intracellular iron,
while M2 macrophages metabolize heme iron through the
action of heme oxygenase 1 (HMOX1). The resistance of M1 and
the sensitivity of M2 macrophages to RSL3 induced ferroptosis
are associated with inducible NO synthase/NO•, which sub-
stitutes GPX4 as an anti-ferroptotic material and inhibits pro-
ferroptotic lipid peroxidation [88]. Ferroptosis of macrophages
can occur in advanced plaques [89], suggesting that ferroptosis
of the polarized macrophages accelerates AS progress.

Macrophage associated iron metabolism affects AS. Macrophage
is a key cell type in atherosclerotic plaques, where macrophage
accumulation and iron deposition are displayed [90, 91]. However,
the precise mechanisms by which iron levels in macrophages
contribute to the pathogenesis of AS have not been established.
Excess iron activates the generation of ROS to induce lipid
peroxidation in foam cell-derived macrophages, leading to the
instability of atherosclerotic plaques [92]. Moreover, iron metabo-
lism disorders in macrophages are involved in inflammatory
responses that aggravate the severity of AS [14], which may be
closely associated with iron overload to induce macrophage
polarization towards the M1 proinflammatory phenotype through
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the ROS/acetyl-p53 pathway [93, 94]. Furthermore, through the
nuclear factor erythroid-2 related factor 2 (NRF2) in macrophages,
LDL oxidative modification upregulates the mRNA expression of
iron metabolism-associated genes (Hmox1 and Fpn) [86]. Iron
retention further aggravates iron overload through the ox-LDL-
mediated TLR4/NF-κB pathway in macrophages, due to choles-
terol disequilibrium [9], implying that iron and lipid accumulation
in macrophages within the atherosclerotic plaque synergistically
promote AS. Iron chelators, such as desferrioxamine (DFO),
decrease intracellular iron concentration by releasing free iron
and lowering proinflammatory factor monocyte chemotactic
protein-1 (MCP-1) and decreasing the macrophage markers,
thereby delaying the development of aortic atherosclerotic lesion
without the changes of total cholesterol and triglycerides in
apoE−/− mice serum [95]. Therefore, dietary iron intake
restriction is a potential measure for inhibiting plaque formation,
at least in part, by the reduction of iron deposition and LDL
oxidation in vascular lesions [96]. Interestingly, iron deficiency
upregulates atheroma inflammation and enhances the production
of extracellular matrix metalloproteinase inducer (EMMPRIN)/
matrix metalloproteinase-9 (MMP-9) from human monocyte-
derived macrophages or foam cells by activating p38/ mitogen-
activated protein kinase (MAPK)/NF-κB pathway [97], and by the
overexpression of tumor necrosis factor-alpha (TNF-α) [98],
interleukin-1β (IL-1β) [99], cyclooxygenase-2 [100], and prosta-
glandin E2 (PGE2) [100]. Iron overload and iron deficiency have
been shown to activate pro-inflammatory responses. Iron overload
induces ROS-related inflammation while iron deficiency regulates
the expression of inflammatory factors at the transcription level. In
conclusion, iron metabolic imbalance in macrophages accelerates
the formation of AS via ferroptosis.

The effects of ferroptosis in vascular smooth muscle cells on
AS
The migration of vascular smooth muscle cells (VSMCs) into the
intima is involved in the formation of initial atherosclerotic
plaques [101, 102]. Upregulating the expression of GPx4 in VSMCs
enhances artheroprotection by blocking oxidative stress and ROS
[103]. Cigarette smoking is a common risk factor for AS [104]. A
recent study reported that the cigarette smoke extract (CSE)
significantly induced ferroptosis in VSMCs of rat, but not apoptosis
or necroptosis [11]. Moreover, many atherosclerotic inflammatory
factors, including interleukin-1β (IL-1β), IL-6, tumor necrosis factor-
α (TNF-α), matrix metalloproteinase-2 (MMP-2), and MMP-9 were
shown to be upregulated by CSE in the rat aortic smooth muscle
cell line A7r5. However, vascular endothelial cells were not
influenced by CSE [11]. We postulate that, compared to

endothelial cells, VSMCs have different mechanisms for triggering
ferroptosis, which may produce lipid peroxidation through
different pathways.

FUTURE RESEARCH DIRECTIONS OF FERROPTOSIS IN AS FIELD
Ferroptosis, a cell death mode characterized by iron-dependent
lipid peroxidation, is an important intermediate link between the
initial and advanced AS. Vascular endothelial ferroptosis accel-
erates AS. In addition, several AS-related pathophysiological
events, including lipid and iron metabolism disorders, oxidative
stress, and inflammatory responses, have been associated with
ferroptosis. Furthermore, ferroptotic factors play a mutant role for
AS (Table 1). The small molecules and drugs affecting the onset of
ferroptosis also have an influence on AS (Table 2). However, the
causal relationship and specific mechanisms should be further
clarified.
Ferroptosis is a programmed cell death attributed to organelle

and cytoplasmic membrane damage, in which the key hub is the
overproduction and removal of ROS-induced lipid peroxides. The
effects of lipid disorder-mediated ferroptosis on AS are multi-
faceted. In particular, hepcidin, ferritin, 15-LOX, and GPx4 are
ferroptosis-related factors that mediate the production and
clearance of lipid peroxides, which preliminarily are confirmed
to be associated with AS. By accelerating Fenton reactions,
intracellular iron transport proteins such as transferrin and
transferrin receptors are highly associated with AS [25, 105].
Hepcidin overexpression increases intracellular iron concentration
by degrading FPN proteins and subsequently, the presence of
ferroptosis promotes the rate of AS-CVD [9, 29, 44, 86]. Further-
more, ox-LDL is involved in numerous factors of atherogenesis
and its contribution to ferroptosis may be a novel mechanism for
its damaging effects on AS. ox-LDL enhances iron overload which
induces macrophage inflammation through the ROS/acetyl-p53
pathway [93, 94], while ox-LDL-induced TLR4/NF-κB activation
mediates 15-LOX leading to AS-related cholesterol disequilibrium
and inflammation. Compared to iron transport proteins that
regulate lipid peroxides production, GPx4 is a crucial protein in the
clearance of lipid peroxidation. GPx4 activation inhibits ferroptosis
and alleviates AS injury [7] (Fig. 1). However, GPx4 knockdown
reverses this effect. GPx4 should, therefore, be used to elucidate
on the relationship between ferroptosis and AS to understand the
specific role of lipid peroxidation in AS.
Through AS, ferroptosis can occur in a variety of cells, such as

macrophages, VSMCs, VECs. Ferroptosis promotes AS through
lipid peroxidation-induced endothelial dysfunction (Fig. 2) [12].
Iron overload promotes M1 macrophage transformation through

Table 1. The effects of ferroptotic factors on AS.

Ferroptotic factors Promote/inhibit The effects on AS References

Ferritin Promote Increase the thickness of carotid intima-media [22]

TFR1 Promote Accumulate in the nuclear regions of foamy cells [25]

Hepcidin Promote Promote TLR4/NF-κB pathway to induce iron retention in
murine macrophages

[9]

Enhancing inflammation-mediated AS [29]

Knockout exhibited low iron levels in aortic macrophages and
decreased aortic macrophage activities

[30]

ROS Promote ROS-induced phospholipid oxidation upregulated during I/
R injury

[39]

15-LOX Promote Promoting ox-LDL deposition in the subendothelial space [44]

Changing intracellular cholesterol metabolism in macrophages [46]

GPx4 Inhibit Converting lipid hydroperoxides [7]

ATF3 Inhibit Inhibiting PI3K-MMP3 signal pathway, reducing elastic lamina
damage, increasing plaque stability

[80]
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the ROS/acetyl-p53 pathway [94] and induces endothelial
dysfunction by ferroptosis, which can be alleviated by DFO
(Fig. 1) [12, 94]. However, it is unclear whether the direct
exposure of VECs to serum iron would affect ferroptosis in
endothelial cells and then raise the initiation of AS. In addition, in
previous studies of AS, macrophages are the main inflammatory
cells. Therefore, whether and how ferroptosis regulates macro-
phage inflammatory response that probably affects AS is
noteworthy. Thus, it is conceivable that ferroptosis may play an
important regulatory role in cell phenotype and function
associated with AS.
Although several interesting discoveries have manifested

some factors related to ferroptosis participate in the initiation
and progression of AS, the exact roles and mechanisms remain to

be further investigated. The below aspects deserve further
research. Firstly, vitamin (Vit) E inhibits ferroptosis [106], and Vit E
has been shown to increase antioxidant resistance in vitro and
prevent atherosclerotic plaque formation [107], but a 4.5-year
follow-up found no significant difference in the risk of
cardiovascular events in patients with or without Vit E
supplementation [108–110]. However, it is worth studying
whether Vit E affects AS through ferroptosis. Secondly, that CSE
can induce ferroptosis of VSMC, but not that of endothelial cells
remains unknown [11], and it is speculated that there probably
exist differences in the mechanism of ferroptosis between
endothelial cells and VSMC. Thirdly, the specific mechanism of
the effect of different macrophage phenotypes on ferroptosis
has not been fully investigated.

Fig. 1 Molecular mechanisms and signaling pathways of ferroptosis interact with AS. Iron overload, along with ox-LDL as the major
component of lipid peroxidation, are contribute to ferroptosis and promote AS, which can be transferred by DFO. Fe3+ through the cell
membrane via TFR1, converted into Fe2+ by Fenton reaction. Too much Fe2+ causing iron overload in the cells, promote ferroptosis and
accelerate the production of intracellular ROS, which promotes the polarization of M1 macrophages through the acetyl-p53 pathway to
facilitate the occurrence of AS. The role of ox-LDL can be divided into two aspects. On the one hand, ox-LDL increases the expression of
hepcidin by promoting the TLR4/NF-KB pathway, which enhances the degrading of Fpn, improving intracellular iron, and causing ferroptosis.
On the other hand, the accumulation of intracellular lipid peroxidation has a mutual promotion effect with iron overload, which removal
mainly through Gpx4. The interaction between ferroptosis and AS is probably through angiogenesis and inflammation.

Table 2. Small molecules and drugs that interfere with ferroptosis in AS-related cells.

Compound Cell type Treatment effects References

Erastin HUVEC Induce ferroptosis with a rapid generation of ROS and a reduced viability [76]

MAEC Induce ferroptosis with elevated ROS, lipid peroxidation, and MDA levels within the
damaged mitochondria

[12]

RSL3 Macrophage Induce ferroptosis associated with inducible NO synthase/NO• [88]

Fer-1 HUVEC Allevite ROS and maintain cell viability [76]

MAEC Suppress the generation of peroxidation products [12]

DFO Macrophage Decreasing the macrophage markers and lowering proinflammatory factor MCP-1 in
apoE−/− mice

[95]

Deferoxamine Mesylate HUVEC Rescued ferroptotic damage in endothelial cells [77]

CSE VSMC Induced ferroptosis and upregulate atherosclerotic inflammatory factors [11]
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In summary, studies on ferroptosis in the field of AS are still at a
very early stage. The important role of ferroptosis in the
occurrence and development of major chronic disease AS has
attracted extensive attention. It is believed that more in-depth
studies will explore and reveal the current limited molecular
mechanism of ferroptosis, thus providing more enough scientific
basis for the clinical application of targeting ferroptosis to the
prevention and treatment of AS.
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