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Abstract 21 

Background and aims: Hypertension is a major risk factor for the development of 22 

cardiovascular disease (CVD) in adulthood. High blood pressure (BP) is associated with 23 

subclinical vascular impairments as early as childhood. We aimed to assess the association of 24 

retinal microvascular diameters and large artery pulse wave velocity (PWV) with progression 25 

of childhood BP. 26 

  27 
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Methods: In our prospective Basel cohort study, 1171 children aged 6 to 8 years were screened 28 

for BP, body mass index, retinal vessel diameters and PWV using standardized protocols. After 29 

4 years, all parameters were assessed in 749 children using the same protocols. 30 

  31 

Results: Children with narrower central retinal arteriolar diameters (CRAE) and higher PWV 32 

at baseline developed higher systolic BP after 4 years (β [95% CI] 0.6 [0.072 to 1.164] mmHg 33 

per 10µm decrease, p=0.026 and β [95% CI] 0.6 [0.331 to 0.838] mmHg per 0.1 m/s increase, 34 

p<0.001, respectively). Children with increased systolic BP at baseline developed narrower 35 

CRAE and higher PWV at follow-up (β [95% CI] -3.3 [-4.43 to -2.09] µm per 10 mmHg 36 

increase, p<0.001 and β [95% CI] 0.13 [0.10 to 0.16] m/s per 10 mmHg increase, p<0.001, 37 

respectively).  38 

 39 

Conclusions: Retinal arteriolar diameter and PWV independently predict progression of 40 

childhood BP, while initial BP is linked with development of micro- and macrovascular 41 

impairments, describing a bivariate temporal relationship between vascular health and BP. 42 

Childhood may present a window of opportunity for initiation of primary prevention strategies 43 

for the treatment of high BP to help prevent manifestation of CVD later in life. 44 

 45 

Keywords: retinal vessel diameters, pulse wave velocity, blood pressure, childhood 46 

cardiovascular risk, primary prevention  47 

Jo
urn

al 
Pre-

pro
of



2 

 

1. Introduction 48 

Hypertension and obesity are main risk factors for the development of cardiovascular disease 49 

(CVD) and cardiovascular (CV) mortality across the lifespan.1 Classical and lifestyle-related 50 

risk factors are linked with pre-atherosclerosis  and endothelial dysfunction in children, which 51 

may lead to CV events later in life.2, 3 An increased incidence of elevated blood pressure (BP) 52 

among children and adolescents has been shown in epidemiological surveys.4 Childhood 53 

hypertension has been shown to track into adulthood.5 Furthermore, childhood CV risk factors 54 

have been related to adult CV events.6 Systolic BP in late adolescence, for example, has been 55 

shown to be an independent predictor of coronary heart disease and stroke in middle 56 

adulthood.7, 8  57 

Non-invasive assessment of vascular structure and function allows to quantify hypertension- 58 

and obesity-related target organ damage in the circulation. Retinal vessel diameters, both 59 

arteriolar narrowing and venular widening, have been shown to be valid microvascular 60 

biomarkers for CV risk and disease across all age groups.9 In addition, central pulse wave 61 

velocity (PWV) is a non-invasive assessment to quantify macrovascular health and CVD in 62 

adulthood.10, 11 In children, we have previously shown that higher BP and BMI are associated 63 

with subclinical vascular changes at the level of the micro- and macrocirculation.12,13 The 64 

previously published baseline results of our study demonstrated that children with high BP and 65 

obesity had narrower central retinal arteriolar equivalents (CRAE) and a higher PWV compared 66 

to normal weight peers.14  67 

In this large scale longitudinal follow-up study, we aimed to assess the association of retinal 68 

vessel diameters and PWV at baseline with progression of BP after 4 years for the first time. In 69 

turn, to explore the temporal relationship, we also aimed to investigate the association of higher 70 

BP and BMI at baseline with development of retinal arteriolar narrowing and increased PWV 71 

at follow-up.   72 
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2. Patients and methods 73 

2.1 Study design and participants 74 

The baseline data of our study “Exercise and Arterial Modulation in Youth” (EXAMIN 75 

YOUTH) were collected in all elementary schools in the City of Basel (Switzerland) in 2016/17 76 

as previously described.15 Children were between 6 and 8 years old and had written parental 77 

consent for medical screening. In the school setting children were assessed for BP, BMI, retinal 78 

vessel diameters and pulse wave velocity Follow-up examinations were conducted 4 years later 79 

(2020/21) in the same setting and under the same conditions. The study was approved by the 80 

Ethics Committee of Northwestern and Central Switzerland (EKNZ, No. 258/12). The reporting 81 

of the study conforms to the Strengthening the Reporting of Observational Studies in 82 

Epidemiology statement and complies with the Guidelines for Good Clinical Practice.16 83 

 84 

2.2 Measurements 85 

2.2.1 Retinal vessel diameters and pulse wave velocity 86 

A fundus camera (Topcon TRC NW) and analysis software (Visualis 3.0, iMEDOS Health 87 

GmbH, Jena, Germany) were used for retinal vessel analysis. Two valid images of both eyes, 88 

with the optic nerve head at center, were acquired by trained scientific staff at an angle of 45°. 89 

Subsequently, retinal arteriolar (CRAE) and venular (CRVE) diameters were evaluated semi-90 

automatically in a range of 0.5 to 1-disc diameter from the edge of the optic nerve head by two 91 

experienced examiners (Vesselmap 2, Visualis, iMEDOS Health GmbH) as previously 92 

described.14, 17 Incorporating the Parr-Hubbard formula, CRAE and CRVE were averaged, and 93 

the arteriolar-to-venular diameter ratio (AVR) was calculated using CRAE and CRVE.18 For 94 

retinal analysis, initial values from the baseline assessment were used as reference and the same 95 

vessels and same vessel segments were marked to ensure optimal standardization. 96 
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The oscillometric Mobil-O-Graph monitor (I.E.M. GmbH, Germany) was used to determine 97 

central PWV as previously described.14 Measurement of arterial stiffness by the oscillometer is 98 

in good agreement with the conventional tonometric method and has been validated in children 99 

(Supplements, Detailed Methods) .19, 20  100 

 101 

2.2.2 Blood pressure and body mass  102 

Blood pressure assessments were performed in a sitting position after 5 min. of rest. Five 103 

measurements were taken by trained scientific stuff with a rest period of one minute in between 104 

using the automated oscillometric device Oscilomate 9002 (Oscillomate; CAS Medical 105 

Systems, Branford, CT) or Mindray VS-900 (Mindray Bio-Medical Electronics Co., Ltd., 106 

Shenzhen, China) as previously described.14 In brief, the mean of the three measurements with 107 

the smallest variation was used for further analysis. Both algorithms to quantify BP have 108 

previously been validated in children21-23 and do not statistically significant differ 109 

(Supplements, Detailed Methods).24, 25 110 

Body height was measured without shoes and in a standing position using a stadiometer (Seca, 111 

Basel, Switzerland). The bioelectric impedance analyzer (InBody 170 Biospace device, InBody 112 

Co, Soul, Korea) was used to determine weight in light sportswear and without shoes 113 

(Supplements, Detailed Methods).14, 26  114 

 115 

2.3 Statistical analysis 116 

To describe population characteristics, means and SD were calculated for baseline and follow-117 

up data and compared by a simple t-test of dependent samples. To assess potential selection 118 

bias, a simple t-test for independent samples between follow-up and lost to follow-up was 119 

performed. Furthermore, to determine changes in population characteristics we have used a 120 
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simple t-test to analyze differences from baseline to follow-up. Spearman’s correlation was run 121 

to quantify the association between CRAE and PWV. To account for missing data of height, 122 

weight, SES, CRF and BMI, we imputed 50 datasets using chained equations with predictive 123 

mean matching (MICE).27 To investigate the association between retinal vessel diameters and 124 

PWV with BP and BMI, linear mixed regression models were applied, using schools and classes 125 

nested within schools as random effects.28, 29 Distribution of variables were inspected a priori 126 

using histograms and assumptions for regression models were checked graphically using 127 

residual plots.30 We have used directed acyclic graphs (DAGs) to identify confounders and 128 

reduce risk of bias for each calculation (Supplementary Fig. 1).31 Based on the DAG, we 129 

adjusted the models for age, sex, systolic or diastolic BP, BMI, cardiorespiratory fitness (CRF) 130 

and socioeconomic status (SES). The regression analyses are presented with β coefficients and 131 

the corresponding 95% confidence intervals (CI). Marginal predicted means were used for 132 

graphic representation.  Based on data from our previous pilot study, we estimated a > 95% 133 

power to detect a regression coefficient of -0.166 for baseline CRAE and systolic BP at follow-134 

up in 250 participants.32 All tests were 2-sided, and the significance level was set at 0.05. All 135 

calculations were performed with Stata 15 (StataCorp, College Station, TX, United States). 136 

 137 

3. Results 138 

3.1 Population characteristics 139 

At baseline, 1171 children were assessed at baseline and, of these, 749 children had complete 140 

data at follow-up (Figure 1). The follow-up group did not differ with respect to height, weight, 141 

arteriolar-to-venular ratio (AVR), CRAE, CRVE, PWV, BP, and BMI from the lost-to-follow-142 

up group (36%). Table 1 shows the population characteristics in absolute values and SD for 143 

baseline, follow-up and mean differences over time. At baseline, the prevalence for elevated 144 

systolic BP and children with systolic BP in the hypertensive range was 10.5% and 14.8%, 145 
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respectively.25 Furthermore, 9.1% of the children at baseline were categorized as having 146 

elevated diastolic BP and 15% as having diastolic BP in the hypertensive range. The prevalence 147 

of children with overweight and obesity at baseline was 9.4% and 2.8% respectively.26 Four 148 

years later, the prevalence for elevated systolic BP and children with systolic BP in the 149 

hypertensive range was 5.8% and 10.1% and of children with elevated diastolic BP and in the 150 

hypertensive range was 4.8% and 7.5% respectively.25 At follow-up, the prevalence of children 151 

with overweight and obesity  was 11.4% and 3.1%, respectively.26 Changes in categories over 152 

time are presented in Supplementary Table2. During 4 years, children developed a significantly 153 

higher BMI (∆2.5±2.1kg/m2), systolic BP (∆5±9.4mmHg) and PWV (∆0.3±0.3m/s). 154 

Furthermore, children at follow-up developed significantly narrower CRAE (∆-7.2±8.0μm), 155 

CRVE (∆-1.4±8.8μm) and a lower AVR (∆-0.02±0.04) compared to baseline (Table 1). 156 

Children and their families were notified in case of a conspicuity and referred to their 157 

pediatrician but not treated within the study setting. 158 

 159 

3.2 Vascular health and development of blood pressure   160 

The association between micro- and macrovascular heath at baseline and development of BP 161 

over four years are presented in Table 2. Children with narrower CRAE at baseline developed 162 

significantly higher systolic BP (β [95% CI] 0.6 [0.072 to 1.164] mmHg per 10µm decrease, 163 

p=0.026) and diastolic BP (β [95% CI] 0.9 [0.044 to 1.370] mmHg per 10µm decrease, 164 

p=<0.001) at follow-up. The corresponding plot with the marginal predicted means of systolic 165 

BP at follow-up, based on CRAE at baseline, is shown in Figure 2A. Children with wider CRVE 166 

at baseline developed significantly lower diastolic BP over the four-year follow-up period (β 167 

[95% CI] -0.5 [-0.879 to -0.311] mmHg per 10µm increase, p=0.035). In addition, children with 168 

higher PWV at baseline developed significantly higher systolic BP (β [95% CI] 0.6 [0.331 to 169 

0.838] mmHg per 0.1 m/s increase, p<0.001) and diastolic BP (β [95% CI] 0.3 [0.083 to 0.498] 170 
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mmHg per 0.1 m/s increase, p=0.006) at follow-up independent of baseline BP levels. The 171 

corresponding plot with the marginal predicted means of systolic BP at follow-up based on 172 

PWV at baseline is shown in Figure 2B.  173 

 174 

3.3 Blood pressure, body mass and development of vascular health  175 

The association between BP at baseline with vascular changes at follow-up are described in 176 

Table 3. We found an independent association of higher systolic BP at baseline with CRAE (β 177 

[95% CI] -3.3 [-4.43 to -2.09] µm per 10 mmHg increase, p<0.001) and CRVE narrowing (β 178 

[95% CI] -1.7 [-3.04 to -0.32] µm per 10 mmHg increase, p=0.015) after 4 years. The 179 

corresponding plot with marginal predicted means of CRAE at follow-up based on systolic BP 180 

at baseline is shown in Figure 2C. Higher systolic BP was also associated with a higher PWV 181 

(β [95% CI] 0.13 [0.10 to 0.16] m/s per 10 mmHg increase, p<0.001) at follow-up (Figure 2F). 182 

For diastolic BP at baseline, we found evidence for a linear negative association with CRAE (β 183 

[95% CI] -3.3 [-4.55 to -1.95] μm per 10 mmHg increase, p<0.001) and PWV (β [95% CI] 0.12 184 

[0.09 to 0.15] m/s per 10 mmHg increase, p<0.001) at follow-up.  185 

The association between BMI at baseline with vascular changes at follow-up are also described 186 

in Table 3.  Higher BMI at baseline was associated with narrower CRAE (β [95% CI] -0.6 [-187 

1.089 to -0.0584] µm per 1 kg/m2 increase, p=0.029) and a higher PWV (β [95% CI] 0.023 188 

[0.011 to 0.0035] m/s per 1 kg/m2 increase, p<0.001) at follow-up.  189 

 190 

3.4 Changes in risk factors and changes in vascular health 191 

The associations between changes from baseline to follow-up in BP and BMI and 192 

corresponding changes in vascular health are presented in Supplementary Table1. Children with 193 

a relative increase in systolic BP developed narrower CRAE (β [95% CI] -1.5 [-2.15 to -0.74] 194 
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μm per 10 mmHg increase, p<0.001) and higher PWV (β [95% CI] 0.06 [0.03 to 0.09] m/s per 195 

10 mmHg increase, p<0.001). A relative increase in diastolic BP was significantly associated 196 

with higher PWV (β [95% CI] 0.05 [0.02 to 0.08] m/s per 10 mmHg increase, p=0.002).  197 

Children with a relative increase in BMI over the four years developed significantly narrower 198 

CRAE (β [95% CI] -0.9 [-1.500 to -0.362] μm per 1 kg/m2 increase, p=0.001) and a higher 199 

PWV (β [95% CI] 0.026 [0.001 to 0.051] m/s per 1 mmHg increase, p=0.039). Supplementary 200 

Table3 and S4 present an overview of the temporal changes in BP and BMI categories, along 201 

with the average alterations observed in the corresponding vascular parameter. 202 

 203 

3.5 Interrelation of vascular biomarkers 204 

The association between CRAE at baseline and PWV at follow-up, and vice versa, are presented 205 

in Figure 2D and E. Children with narrower CRAE at baseline developed significantly higher 206 

PWV (β [95% CI] 0.03 [0.008 to 0.04] m/s per 10µm decrease, p=0.005) at follow-up (Figure 207 

2D). On the other hand, children with higher PWV at baseline developed significantly narrower 208 

CRAE (β [95% CI] -0.4 [-0.79 to -0.04] µm per 0.1m/s increase, p=0.031) at follow-up (Figure 209 

2E). Furthermore, we found a weak to moderate inverse correlation between CRAE and PWV 210 

at both time points (rs= -0.224, p<0.001 and rs=-0.206, p<0.001, respectively). 211 

 212 

4. Discussion  213 

As main findings, narrower CRAE and a higher PWV at baseline were associated with higher 214 

systolic and diastolic BP at follow-up. In turn, higher systolic and diastolic BP at baseline were 215 

related to retinal arteriolar narrowing and higher PWV at follow-up. Furthermore, children with 216 

a relative increase in systolic BP during follow-up developed narrower CRAE and a higher 217 

PWV. In addition, a relative increase in BMI was also associated with retinal arteriolar 218 
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narrowing and a higher PWV. The inverse correlation between microvascular CRAE and large 219 

artery PWV was low to moderate, and the development of both vascular markers after 4 years 220 

was interdependent. 221 

The results of our analysis imply that retinal arteriolar diameters and PWV are associated with 222 

BP progression in young children. Applying thorough adjustment models, our results were 223 

found to be independent of BMI, systolic/diastolic BP, CRF, age, sex and SES. Retinal 224 

microvascular diameters and large artery PWV represent different segments of the vascular 225 

tree. On the one hand retinal microvascular imaging allows for a unique, non-invasive 226 

assessment of the human microcirculation and resistance vessels.9 Central PWV, on the other 227 

hand, provides a valid estimation of large artery wall integrity and macrovascular health.33 A 228 

cross-talk between small and large arteries has previously been described.34 The vascular beds, 229 

however, markedly differ as the microcirculation, for example, is characterized by steady 230 

pressure, whereas the macrocirculation is exposed to pulsatile pressure.35 In two meta-analyses 231 

of cross-sectional studies, we have previously shown that higher childhood BP and BMI were 232 

associated with retinal arteriolar narrowing12 and a higher PWV13. These findings were 233 

confirmed in the baseline assessment of our current EXAMIN YOUTH follow-up study.14 More 234 

evidence is available in adults including associations with CVD outcome. In older adults, 235 

narrower arteriolar and wider venular diameters have been associated with severity of 236 

hypertension36, increased risk of stroke37, 38, and increased CV mortality.39 Furthermore, 237 

increased large artery stiffness has been shown to be an independent predictor for the risk of 238 

stroke as well as CV morbidity and mortality in the general population and in patients with 239 

CVD.10, 40-42 Our findings from this large-scale longitudinal study demonstrate that both retinal 240 

arteriolar narrowing as well as large artery stiffness can independently predict development of 241 

BP during childhood development. Both diagnostic tools, as a standalone approach or in 242 

conjunction, may be used to improve CV risk stratification in young children to identify those 243 
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at risk of developing high BP. Whether retinal arteriolar narrowing and higher PWV in 244 

childhood are predictive for adverse CV outcome in adulthood is unknown and needs to be 245 

addressed by future long-term studies across the age-span.  246 

While vascular health was associated with BP progression, we also found that, in turn, higher 247 

systolic and diastolic BP as well as higher BMI at baseline were associated with retinal 248 

arteriolar narrowing and higher PWV after 4 years. This is clinically relevant as childhood BP 249 

and BMI have not only been shown to track into adulthood5,43, but have also been related to 250 

adverse CV outcome later in life.7, 8, 44, 45 Thus, BP- and BMI-related subclinical arteriolar 251 

narrowing and increased PWV appear to represent early stages of CV risk progression and may 252 

be related to further deterioration of vascular health and CVD manifestation in adulthood. The 253 

Young Finns Study found that higher childhood BP was associated with impaired retinal 254 

arteriolar diameters in mid-adulthood.46 In the Bogalusa Heart Study, childhood BP was a 255 

predictor of arterial stiffness in early adulthood.47 In our study we investigated the long-term 256 

interrelation between BP, BMI and micro- as well as macrovascular health in pre-pubertal 257 

children for the first time. 258 

Investigating the relationship of changes in risk factors with changes in vascular health may 259 

allow to hypothesize about potential reversibility of childhood subclinical vascular damage. In 260 

our study, a relative increase in systolic BP and BMI over the 4-year period was associated with 261 

retinal arteriolar narrowing and higher PWV. In other words, children with an improvement of 262 

systolic/diastolic BP and BMI presented with more favorable vascular health at follow-up. Our 263 

results are in line with a previous finding, showing that a change from elevated BP to normal 264 

BP in the transition from childhood to adulthood was related to a lower PWV in young adults.48 265 

Childhood appears to be a sensitive period in life to initiate treatment of hypertension and 266 

obesity by lifestyle interventions such as physical activity and diet to potentially reverse or at 267 

least reduce subclinical vascular alterations and prevent manifestation of CVD.  268 
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A possible mechanism that may explain the association between baseline arteriolar diameters 269 

and the increase in BP over four years is increased peripheral vascular resistance. Systemic 270 

microvascular vasoconstriction may, for example, be caused by sympathetic overdrive or 271 

endothelial dysfunction. Endothelial dysfunction is characterized by a reduced nitric oxide 272 

(NO) bioavailability and impairments of shear-stress-induced dilation, leading to an increased 273 

peripheral resistance and an increase in peripheral BP.49, 50 Moreover, structural remodeling, 274 

fragmentation of elastic lamellae and deposition of augmented collagen fibers in particular, lead 275 

to a stiffening of large arteries.51, 52 Increased BP and intraluminal pressure induce an auto-276 

regulated myogenic vasoconstriction (Bayliss effect), which may partly explain retinal 277 

arteriolar narrowing in children with high initial BP. The aforementioned structural remodeling 278 

of large arteries is aggravated by prolonged cyclic stress induced by sustained elevated BP, 279 

leading to a further increase in PWV. Furthermore, inflammation and increased BMI are already 280 

associated with wider CRVE in childhood and adolescence.53 Widening of CRVE may 281 

contribute to pooling of blood in the microcirculation, resulting in reduced venous return to the 282 

heart. Consequently, this may alter ventricular filling and preload, leading to a decrease in 283 

diastolic blood pressure. Further research is needed to fully understand the precise mechanism 284 

underlying the association between CRVE and diastolic BP, as the mechanism involved remain 285 

speculative. 286 

Our study has some limitations. We did not perform a second BP measurement on a separate 287 

day or perform a 24h-BP-measurement for the clinical diagnosis of elevated BP or 288 

hypertension. Thus, our data indicate BP values in the elevated or hypertensive range rather 289 

than defined clinical BP categories. The assessment of pulse wave velocity was performed with 290 

an oscillometric device rather than a tonometric carotid-femoral measurement for reason of 291 

practicability when screening children in school setting. Furthermore, our study was performed 292 

in a predominantly Caucasian population and, therefore, our results cannot be transferred to 293 

Jo
urn

al 
Pre-

pro
of

Paul WULLEMAN



12 

 

other ethnicity. Few children may have entered puberty at follow-up, which was not assessed 294 

as part of the screening. Furthermore, we were not able to collect blood samples to identify 295 

circulating cardiovascular risk factors, nor environmental factors such as air pollution or passive 296 

smoking, which could also have influenced our results. Our follow-up investigations were 297 

overshadowed by the Corona pandemic. The related restrictions with a temporary lock-down 298 

of schools and the built environment affected physical activity behavior and general well-being 299 

and may thus have influenced our results. However, the prevalence of SARS-CoV-2 infections 300 

in Swiss school children was very low, even at times of high incidence in the general public, 301 

with low spread of unrecognized virus.54 It is therefore unlikely that SARS-CoV-2 infection 302 

had a direct influence on the data collected. To account for missing data of height, weight, SES, 303 

CRF and BMI, we imputed 50 datasets using chained equations with predictive mean matching. 304 

As a sensitivity analysis, we also conducted a complete-case analysis (results not shown). The 305 

results of the complete-case analyses did not markedly differ from the primary analyses using 306 

multiple imputation. The strengths of our study are the longitudinal design, the large number of 307 

participants and application of standardized methods both at baseline and follow-up. We have 308 

used DAGs to identify confounders and reduce risk of bias for each model.31 The models were 309 

refined and adjusted for cofounders such as CRF and SES.  310 

4.1 Conclusions 311 

In our study, a two-way relationship has been shown whereby baseline vascular health 312 

determines development of BP, and initial BP determines development of vascular health 313 

during childhood. These findings are best described as a bidirectional or bivariate temporal 314 

relationship demonstrating an interdependency between vascular health and BP. Microvascular 315 

arteriolar narrowing and large artery stiffness show a low to moderate inverse correlation also 316 

characterized by an interdependency (Figure 3). Both diagnostic tools, separately or in 317 

conjunction, may be used to improve CV risk stratification and to monitor young children at 318 
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risk of developing high BP. Childhood appears to be a window of opportunity for CV risk 319 

screening and timely initiation of primary prevention strategies such as physical activity and 320 

diet interventions. As childhood CV risk tracks into adulthood, aiming at CV risk reduction in 321 

childhood may prove to be an effective means to prevent manifestation of CV disease later in 322 

life.  323 
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Figure Legend 496 

 497 

Figure 1 Flow-chart. 498 

 499 

 500 

Figure 2.  Marginal predicted means. 501 

(A) Marginal predicted means of systolic blood pressure at follow-up based on 502 

arteriolar vessel diameters at baseline. (B) Marginal predicted means of systolic 503 

blood pressure at follow-up based on pulse wave velocity at baseline. (C) 504 

Marginal predicted means of arteriolar vessel diameters at follow-up based on 505 

systolic blood pressure at baseline. (D) Marginal predicted means of pulse wave 506 

velocity at follow-up based on CRAE at baseline.  (E) Marginal predicted 507 

means of CRAE at follow-up based on pulse wave velocity at baseline. (F)  508 

Marginal predicted means of pulse wave velocity at follow-up based on systolic 509 

blood pressure at baseline. 510 

 511 

Figure 3 Graphical abstract. 512 

 513 
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