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Abstract: Trauma and its related psychological and somatic consequences are associated with higher
cardiovascular morbidity. The regulation of both the gasotransmitter hydrogen sulfide (H2S) and the
neuropeptide oxytocin (OT) have been reported to be affected during physical and psychological
trauma. Both mediators are likely molecular correlates of trauma-induced cardiovascular complica-
tions, because they share parallel roles and signaling pathways in the cardiovascular system, both
locally as well as on the level of central regulation and the vagus nerve. Meditation can alter the
structure of specific brain regions and can have beneficial effects on cardiovascular health. This per-
spective article summarizes the evidence pointing toward the significance of H2S and OT signaling
in meditation-mediated cardio-protection.
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1. Introduction
Trauma is associated with a higher risk of cardiovascular disease and dysfunction as

well as increased morbidity and mortality [1–4]. Recently, the gasotransmitter hydrogen
sulfide (H2S) and the neuroendocrine oxytocin (OT) systems have been shown to interact
and play parallel roles in the heart and brain in response to both physical and psychological
trauma [1,5–10]. Trauma can be either a result of physical injury or have a psychological
origin, in the latter case caused by a life-threatening deep emotional pain [11]. Physical
trauma is associated with a serious injury to the body caused by an impact, wound, or
even surgery. Furthermore, both physical and psychological trauma can have long-term
effects on mental health, since they can induce post-traumatic stress disorder (PTSD), which
causes the patient to relive traumatic events and is commonly associated with psychological
co-morbidities such as depression, anxiety, and substance abuse. A recent example of
a stress-induced cardiomyopathy, which is only reportedly present in adults (mostly
postmenopausal women), soon after experiencing a sudden unexpected emotional or
physical stressor is Takotsubo cardiomyopathy, also known as broken heart syndrome [12].
Takotsubo cardiomyopathy is characterized by left ventricular dysfunction that mimics
a myocardial infarct but in the absence of coronary artery disease and is in many cases
reversible [12]. It has recently been established that both physical and psychological
trauma share somatic correlates [1,2,13]. Meditation has been shown to reduce blood
pressure, heart rate, and physiologic markers of stress [14]. Furthermore, in 2017, the
American Heart Association recommended meditation as an adjunct to guideline-directed
interventions for cardiovascular risk reduction [15,16], although the exact mechanisms by
which meditation confers its cardiovascular benefits are not known. This perspective will
explore the potential role of the H2S and OT systems via the vagus nerve, the link between
the brain and the heart, in mediating cardiac protection through meditation.
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2. Early Life Stress
The significance of early life stress (ELS) in the developmental origins of cardiometabolic

disease such as arthrosclerosis, MI, stroke, arterial hypertension, chronic heart failure,
ischemic, coronary heart disease, and diabetes type 2 is now well established [17–20].
ELS is multifactorial and can be broken down into childhood maltreatment (physical,
sexual, and psychological abuse, maternal separation and/or neglect), as well as stressful
life events that can be traced back to the womb as the pioneering work of Higgins et al.
indicated [21]. Recent studies have suggested that the cardiovascular programming result-
ing in cardiovascular disease (CVD) share common mechanisms. Although they are not
fully understood, the experimental evidence implicates oxidative stress, nitric oxide (NO),
renin angiotensin system, nutrient-sensing signals, and gut microbiota dysbiosis [22–25].
OT and H2S systems have been shown to be cardioprotective and display antioxidant and
anti-inflammatory properties in models of psychological and physical trauma [2,26–29].
As will be briefly shown below, both the H2S and OT systems have been shown to interact
in these very mechanisms instrumental in cardiac programming, a more extensive look at
the role of the H2S and OT systems in ELS-mediated CVD has been recently reviewed by
McCook et al., 2021 [1].

3. H2S System
H2S is one of three known gasotransmitters, alongside NO and carbon monoxide,

and it is produced endogenously by cystathionine �-lyase (CSE), cystathionine �-synthase
(CBS), and 3-mercaptopyruvate sulphurtransferase (3MST) [30]. H2S or its endogenous
enzymes have been reported to be produced in the cardiovascular system specifically in the
following cell types: smooth muscle cells, cardiomyocytes, endothelial cells, and immune
cells [2,9,10,31–33]. Numerous reviews on H2S and its protective effects in the cardiovascu-
lar system are available [22,29–31]. In humans, H2S levels correlate with disease severity in
hypertensive patients [34] and are significantly reduced in hypertensive children [35]. Fur-
thermore, heart failure patients suffering from severe end-stage cardiomyopathy and with
reduced heart function, were shown to have significantly lower H2S levels in comparison to
age-matched controls [29] and reduced NO levels, thus suggesting that atherosclerosis and
hypertension are associated with reduced levels of H2S. The H2S-dependent vasoactive
effects are mediated by downstream signaling cascades that stimulate Akt-dependent
endothelial NO synthase (eNOS). Wang et al. [36] propose that CSE mediates cardio-
protection by upregulating the OT receptor (OTR) through the reperfusion injury salvage
kinase (RISK) pathway [5,36]. The RISK pathway has been suggested to be the down-
stream molecular pathway, where H2S and OT signaling converge in cardio-protection
in atherosclerosis [36]. Atherosclerosis is characterized by elevated levels of low-density
lipoproteins, decreased high-density lipoproteins, oxidative stress, reduced NO, endothe-
lial dysfunction, and inflammation [37], leading to the formation of fibro-fatty lesions in the
vascular wall and is the main cause of death from CVD [37]. Interestingly, the administra-
tion of both H2S and OT have been reported to reduce atherosclerotic plaque formation and
inflammation [1]. Furthermore, the H2S and OT systems share the downstream signaling
mechanisms which converge on the same nitric oxide synthase (NOS)/NO-dependent
pathway, which is salient for the future discussion on meditation [2,29,38].

4. Oxytocin System
The neuroendocrine OT system is comprised of the nonapeptide OT and the OTR

and is based on a ligand–receptor interaction. The binding of OT to its receptor stimulates
pro-survival kinases such as ERK and PI3K/Akt, which can in turn activate eNOS or
CSE (H2S) [36]. The NO-mediated vasodilatory effects of OT are also reported to reg-
ulate blood pressure [2,39–43] and body fluid homeostasis through an interaction with
H2S [26,44]. OTR expression has been detected in cardiomyocytes, vasculature (smooth
muscle cells and endothelium), macrophages, peripheral blood mononuclear cells, and
cardiac fibroblasts [2,9,45–51]. There are a number of recent reviews available on the role



Trauma Care 2021, 1 185

of OT in the heart [39,46,52,53]. Many of the cardiovascular properties reported for OT
are similar to those cited for H2S, e.g., increase in the glucose uptake in cardiac cells,
anti-inflammatory and antioxidant activity [54–56], blood-pressure-lowering capacities via
NO-mediated vasodilation [57], negative inotropic and chronotropic effects, natriuretic
effects, and effects on endothelial cell growth [58–60].

Recently, a more direct connection between the H2S and OT systems was shown in
an acute chronic mouse model of traumatic injury in response to cardiovascular injury. In
mice, trauma significantly reduced the cardiac OTR expression, and this downregulation
was further aggravated in mice with genetic CSE deletion. Furthermore, the loss of cardiac
OTR was restored by exogenous H2S administration through the slow-releasing H2S donor
GYY4137 [9]. Additionally, naïve CSE knock out (ko) mice had lower levels of OTR [2],
and similarly, naïve mice with a genetic deletion of OTR presented with a reduction in CSE
expression [8].

Psychological stress increases blood pressure and heart rate; the chemical blockade
of the OTR was shown to worsen the cardiovascular response to stress [61–64]. In rodent
models of maternal separation, the neonates respond with increased inflammation, and OT
infusion has been shown to be beneficial [65,66]. Interestingly, a parallel response of the H2S
and OT systems was recently reported in response to ELS. In a mouse model of maternal
separation, the authors reported that long term separation stress (LTSS) led to a long-term
reduction in the cardiac OTR and CSE expression of adult mice exposed to ELS [8]. It is
striking that these experiments in a psychological trauma model reported similar findings
regarding cardiac OTR and CSE expression as those reported by Merz et al. [9] in a com-
bined acute on chronic physical trauma model where there was a down regulation of the
OTR in cardiac tissue. Furthermore, the genetic deletion of 3MST, another endogenous H2S
producing enzyme, led to hypertension and cardiac hypertrophy, which was accompanied
with increased anxiety-like behavior in old age [67]. In another experiment, mice with a
genetic mutation of 3MST presented with reduced cardiac CSE and OTR expression both in
the naive and post-injury state [5], thus suggesting an important, yet not fully resolved, role
for 3MST in the context of stress-induced cardiovascular disease. This also provides further
support for the mutual and interrelated role of H2S and OT systems in both physical and
psychological trauma [5].

5. Hypothalamic–Pituitary–Adrenal Axis and Brain
The hypothalamic–pituitary–adrenal axis (HPA) plays key roles in basal homeostasis

and responding to both external and internal stimuli in the body’s response to stress. These
include psychological stressors, and, hence, the HPA is also postulated to be involved
in the vulnerability to psychological pathologies [68–74]. It has been shown that neglect
and abuse lead to the dysregulation of the HPA [75]. OT release is involved in the reg-
ulation of cortisol levels and thus helps maintain the balance in the HPA’s response to
stress [68,76–79]. Specifically, OT release is linked to anxiolytic and anti-depressive be-
havior by attenuating stress induced HPA activity [76,80]. Chronic postnatal stress was
shown to affect stress responses in adulthood by increasing OTR gene expression in the
hippocampus as a response to secondary stress [76]. In contrast, very recent findings in
mice show that intranasal OT administration suppressed the stress response and reversed
“deficient emotional contagion”, which was accompanied by increased OTR expression
in the prefrontal cortex and the hypothalamus [81]. Nonetheless, stress can lead to a
suppression of the endogenous production of OT and to the inhibition of negative feed-
back in the HPA, ultimately leading to hypercortisolemia [68,82,83]. Recent results have
similarly demonstrated that stress-induced depression is associated with dysregulated H2S
generation in the hippocampus [84], in turn, its supplementation inhibits depressive-like
behavior, suggesting a novel potential role for H2S as an antidepressant [85].

In a porcine acute subdural hematoma (ASDH) model, the presence of OT/R in the hy-
pothalamus was confirmed and was also found to co-localize with CSE [2,7]. Interestingly,
CSE and OTR displayed reciprocal expression patterns in the cerebellum, suggesting that
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different brain regions may differ in the interaction of the OT H2S systems [2]. Furthermore,
the authors observed the activation of the H2S and OT systems in the prefrontal cortex,
which may assume importance because this is one of the brain regions reported to be
dysregulated in PTSD. The presence of these two systems may be indicating potentially
relevant biological mechanisms of ASDH-induced PTSD [6,86,87].

6. Brain and Heart–Vagus Nerve–H2S and Oxytocin
Recently, it has been proposed that a physiological mechanism for the interaction of

the H2S and OT systems between the brain and heart is the vagus nerve [1]. The vagus
nerve regulates metabolic homeostasis and connects the brain and heart through afferent
vagal nerve fibers (80%), which control sensory signals towards the brain, and efferent
vagal nerve fibers (20%), which conduct signals towards peripheral organs such as the
heart, lungs, and gastrointestinal tract. In the brain, fibers of the vagus nerve terminate in
the nucleus tractus solitaris, which connects to the amygdala, the hypothalamus, and the
orbito-frontal cortex [88]. The vagus nerve plays an important role under stress conditions
in protecting the heart from being over stimulated [89]. When looking at the brain and
nervous system, there is also evidence for a bi-directional effect of the H2S and OT systems
in the interaction of the CV and the central nervous system (CNS) [26].

OT acts on sympathetic and vagal outputs to control heart and blood vessel function
through oxytocinergic cells in the PVN, which are directly connected to the vagal nuclear
complex [90]. The OTR in the PVN fine-tunes the tonic neural control of baroreflex sen-
sitivity, short-term blood pressure variability, and autonomic control in cardiovascular
diseases [90]. The inhibition of OT signaling to the vagus nerve may lead to impaired
autonomic control in cardiovascular disease [88,90]. The OT-producing magnocellular
neurons of the PVN have been shown to directly excite cardiac vagal neurons, and the
OT system, in particular during stress and anxiety, has been implicated in the regulation
of cardiovascular homeostasis and parasympathetic cardiac activity [91]. The chronic
stimulation of OT-producing neurons in the PVN, activating cardiac vagal neurons, in-
creased the parasympathetic tone and reduced cardiac hypertrophy [91]. In myocardial
ischemia/reperfusion (I/R) injury, activation of the vagus nerve and attenuated severe
arrhythmias led to a reduction in free radical blood levels and reduced mortality [92].
The stimulation of the vagal dorsal motor nucleus in the brainstem lowered respiratory
frequency and induced bradycardic responses [93]. OT also mediated cardio-protection
through the cardiovascular, respiratory, and immune responses, thus strengthening an
autonomic cholinergic link [94]. The authors could show in endotoxemic rats that OT
administration (subcutaneously) reduced tachypnea and was beneficial for cardiovascular
respiratory coupling, as assessed by the spectral components of heart rate variability [94],
which is the main read out for vagus nerve activity [94].

Reports on the role of H2S in vagal-nerve-mediated cardiovascular function are limited
at best; nonetheless, a microinjection of an exogenous H2S donor (NaHS) into the dorsal
motor nucleus of the vagus nerve led to decreased respiratory frequency and heart rate [95].
In a model of chronic heart failure, the microinjection of GYY4137 into the PVN led to
higher renal sympathetic nerve activity, increased blood pressure and heart rate, and was
beneficial for the cardiac sympathetic afferent reflex [96]. The endogenous H2S-producing
enzyme CBS has been localized in the dorsal motor nucleus of the vagus nerve, suggesting
local H2S production [95,97]. In a more recent study, it is reported that local H2S production
by CBS, in the cerebral neural networks that maintain respiration, was responsible for
eupnea: the rhythmic three-phase respiratory pattern [98]. The authors showed that when
H2S synthesis was inhibited, eupnea was not maintained but turned to gasping and was
reflected in decreased vagus nerve activity [98]. “H2S dependent oxygen sensing” by
glomus cells in the carotid body is CSE-mediated, and its inhibition leads to failure of the
hypoxic response accompanied by a loss of catecholamine release [99,100]. Taken together,
the results reported above demonstrate that both H2S and OT directly influence the vagal
nerve through stimulation of the PVN, ultimately affecting the heart and the cardiovascular
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system: blood pressure, heart rate, heart rate variability, and cardiovascular tone. OT, in
concert with H2S, could have a direct physiological interaction, affecting the respiratory
system and respiratory patterns, baroreceptor sensitivity, and reactions to hypoxic events
in cardiovascular stress.

7. Meditation (Breath Control)
Over the last decade, reliable evidence has been accumulating showing the beneficial

role of meditation in both mental health and physical wellbeing [15,16]. In a meta-analysis
and systemic review Pascoe et al. found that in all forms of meditation analyzed, meditation
reduced blood pressure, heart rate, and physiological markers of stress: cortisol, C reactive
protein, TNF-↵, and triglycerides [14]. In 2017, the American Heart Association (AHA)
suggested the practice of meditation as an adjunct to guideline-directed interventions
for cardiovascular risk reduction [15,16]. Furthermore, in a very recent study using a
large national data base (the National Health Interview Survey) of the US population,
all patients with hypercholesterolemia, systemic hypertension, diabetes mellitus, stroke,
and coronary artery disease, as well as those reporting to meditate, were identified and
contrasted to the non-meditating patients. Meditation was associated with a significant
reduction in the incidence of all the parameters measured [15]. Traditional approaches to
help prevent CVD focused on modifying behavioral patterns in adults, although, recently,
the AHA has suggested that childhood may be an important period to intervene for
reducing the risk of CVD over the life span [18]. It was suggested that interventions
reducing early risk factors may be more instrumental in early life than interventions that
attempt at remediating CVD later in life [19]. Meditation may be the most appropriate
intervention in early life to combat the onset of CVD in later life. The authors of the
above-mentioned National Health Interview Survey did not define nor limit meditation
to a particular kind of meditation technique. There are a large variety of meditational
practices in the world, and a discussion on this topic is beyond the scope of this perspective
article, but the topic has been adequately reviewed by Dudeja 2017 as well as Gerritsen
and Band 2018 [101,102]. What is maybe more relevant is that meditational practices aim
at establishing a “relaxation response” and are practiced by more than 30% of adults in
the USA and that this practice counteracts the effects of stress by reducing volumetric
oxygen consumption from rest, although the exact mechanism remains unknown [103].
Kaliman et al. [104] reported that mindfulness meditation with experienced meditators
versus control (non-meditators) led to changes in epigenetic regulatory enzymes and
inflammatory gene expression. The genes analyzed were the same at basal levels for both
groups, but after a day of intense meditation, the experienced meditators presented with
lower expression of histone deacetylase genes, changes in global modifications of histones,
and reduced expression of pro-inflammatory genes [104], thus implying that meditation is
able to effect changes in epigenetic programming with beneficial and anti-inflammatory
properties. The salubrious effects associated with meditation are incontrovertible, but there
are no clear indications as to the why nor the how. “Mindfulness meditation” describes a
conscious state characterized by a mental awareness and attention to the present moment
and originates from Buddhist meditational techniques: focusing on the breath (Anapanasati)
or awareness of body, sensations, mind, and mental phenomena (Satipatthana), or calm
abiding (Samatha), leading subsequently to relaxation [105,106].

Interestingly, the intranasal administration of OT reportedly increased feelings of
“spirituality” and positive emotions experienced during meditation [107]. Followed by
the fact that salivary OT was significantly increased in participants practicing Arigato-Zen
meditation in a small study of 32 participants, this may be pointing to a potential mecha-
nism [108]. These recent findings have led to the hypothesis that OT (H2S) and the HPA
axis are good candidates for the explanation of the salubrious effects of meditation [109]
(see Figure 1).
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Figure 1. Meditation and conscious breathing are suggested to be able to confer cardio-protection via the vagus nerve and
H2S/OT-signaling.

However, the potential mechanism may be hinted at by the study of Kim et al., 2005,
where they investigated serum nitrate-nitrite as a surrogate marker for NO and detected
higher serum levels of nitrite-nitrate and lower lipid peroxidation in the experienced Zen
meditation group vs. the control group [110].

Recalling the previously stated relationship between H2S and OT systems involving
the RISK pathway as the downstream molecular pathway, where H2S and OT signaling
converge in cardio-protection in atherosclerosis [36] and whose activation leads to PI3K,
Akt, and eNOS cascades, we may be starting to glimpse at the mechanisms behind the
beneficial effects of meditation.

Very recently, it was reported that guided mindfulness meditation in college students
was associated with a significant reduction in negative affect and anxiety concomitantly
with an increase in salivary OT in the meditators [111]. In this study there were two 15 min
guided meditation exercises performed at the beginning and end of the sessions: “The pur-
pose of these meditations was to direct one’s attention to breathing and physical sensations,
trying not to identify with the mental events that arose during this process” [111]. It is note-
worthy that the meditating subjects were told to direct their attention to breathing, for it
may just be that attentiveness to breath may be another link to the underlying mechanisms
that lead to the beneficial effects of meditation. Another piece of the puzzle comes to light
when recalling that mindfulness meditation aims at the “relaxation response” because the
elicitation of the relaxation response was shown by Durec et al. to correlate with changes
of fractional exhaled NO but not with the control group [103]. Intriguingly, Bernardi et al.
reported that they “serendipitously” found that the Ave Maria prayer and yoga mantras
enhance and synchronize inherent cardiovascular rhythms by slowing respiration to six
respirations per minute, the same as the endogenous circulatory rhythms described by
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Mayer [112] in 1876 that is related to both vagal and sympathetic activity [113]. This is
echoed by Gerritson and Band, who point out that the threshold for triggering cardiovagal
baroreflex sensitivity can be decreased to about six breaths per minute, and lowering the
sensitivity leads to decreased heart rate and increased vagal tone [101]. They go on to
emphasize that the main mediator of controlled breathing on mental health and cognitive
effects is the vagus nerve [105] and further put forth that specific respiratory patterns
serve to stimulate the vagus nerve, specifically the slow, deep respiration and extended
expiration [101] (see also illustrated in Figure 1).

Interestingly, results from experienced meditators (Masters of Zen and Vipassana)
confirmed heart rate variability (HRV) changes during mindfulness meditation with the
added caveat that the authors perceived an adaptive function of the autonomic cardiovas-
cular system. This further suggests that it may be part of a dynamic regulatory system
integrating the central and autonomic nervous systems and point to its mediation via the
vagus nerve in both the regulation of attention and emotion [114].

Finally, the effects of meditation on the brain have also been investigated in neuroimag-
ing studies, and a meta-analysis of brain morphology studies from meditators revealed that
eight brain regions were consistently altered (in volume and activity) in meditators (see also
Figure 2): frontopolar cortex, sensory cortices and insula, hippocampus, anterior and mid
cingulate, orbitofrontal cortex, superior longitudinal fasciculus, and corpus callosum [115].
The prefrontal regions, particularly the orbitofrontal, medial, and lateral prefrontal cortex
are able to influence heart rate variability and stimulate endocrine responses via the vagus
nerve [101]. However, vagal nerve regulation is bi-directional, and the efferent medullar
termini of the vagus nerve also affects the limbic and cortical regions influencing cognitive
control [101]. Thus, the central autonomic network can be modified through meditation,
and those alterations are reflected in structural and functional changes as evinced by the
above neuroimaging studies on meditators. Interestingly, these brain regions affected by
meditation are in line with what was reviewed for the OT and H2S systems.
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The reported increase in OT levels as a result of meditation are suggestive of a potential
neuroendocrine physiological mechanism for the salubrious effects associated with meditation.

8. Conclusions
The parallels and intricacy of the H2S and OT systems, just reviewed, imply their

mutual interaction in the communication between the heart and brain via the vagus nerve.
However, more importantly, because of the fact that meditation has been shown to be
associated with reduced risk of CVD [15], meditation may prove to be a very real, practical,
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inexpensive, alternative, or adjunct practice for all, but particularly in attenuating the ELS-
mediated developmental origins of CVD. It may just be that meditation would be the ideal
therapy for children (who are still undergoing developmental changes) and individuals
that have developed resilience or otherwise have a contextual history that may lead to
adverse effects of medication.

The last thoughts on the subject of meditation and the OT system go to the following
enigmatic yet provocative statements from Erdman:

“This evidence linking the hippocampus and amygdala with oxytocin provides
a scientific mechanism liberating downstream ancestral memories catalogued
in neuronal networks. Knowing that oxytocin may likewise be boosted during
meditation or prayer provides a possible portal to ancestral diaries. Following
this logic one step further, the meditating mind struggles to put the knowledge
archives into familiar themes, filling in the gaps, and imparting the feelings
of a guiding voice or visiting an Akashic Record library. These treasures are
unbundled and retrieved under the influence of oxytocin to convey resiliency for
survival in life-and death situations.” [116].
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