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Hypertension is a major risk factor for cardio-
vascular disease, and reduction of elevated blood 
pressure significantly reduces the risk of cardio-
vascular events. Endothelial dysfunction, which 
is characterized by impairment of nitric oxide 
(NO) bioavailability, is an important risk factor 
for both hypertension and cardiovascular dis-
ease and may represent a major link between the 
conditions. Evidence suggests that NO plays a 
major role in regulating blood pressure and that 
impaired NO bioactivity is an important compo-
nent of hypertension. Mice with disruption of the 
gene for endothelial NO synthase have elevated 
blood pressure levels compared with control ani-
mals, suggesting a genetic component to the link 
between impaired NO bioactivity and hyperten-
sion. Clinical studies have shown that patients 
with hypertension have a blunted arterial vasodi-
latory response to infusion of endothelium-depen-
dent vasodilators and that inhibition of NO raises 
blood pressure. Impaired NO bioactivity is also 
implicated in arterial stiffness, a major mecha-
nism of systolic hypertension. Clarification of the 
mechanisms of impaired NO bioactivity in hyper-
tension could have important implications for 
the treatment of hypertension. (J Clin Hypertens. 
2006;8(12 suppl 4):17–29) ©2006 Le Jacq

Recent data demonstrate that the global burden 
of hypertension is an important and increasing 

health problem worldwide and that awareness and 
control of hypertension vary considerably.1 Within 
the next 20 years, the percentage of the adult pop-
ulation that will be affected by hypertension is pre-
dicted to increase by 60% to a total of more than 
1.5 billion individuals.1 In economically developed 
countries, the level of adequate blood pressure 
(BP) control (<140/90 mm Hg) among patients 
receiving antihypertensive treatment ranges from 
approximately 30%–50%.2–4

Endothelial function is the first step in the devel-
opment of atherosclerotic disease. It is present in 
the early course of all known cardiovascular (CV) 
risk factors and is characterized by impaired bio-
availability of nitric oxide (NO). Data from large 
observational studies beginning in the 1990s dem-
onstrate that diastolic and systolic hypertension 
are associated with increased risk for the develop-
ment of CV disease and stroke.5 The relationship 
between BP increase and stroke, however, is higher 
than for CV disease. The role of pulse pressure, 
which is the difference between systolic and dia-
stolic BP, as a predictor of CV events is controver-
sial, although it may help to identify subjects with 
isolated systolic hypertension with an increased 
risk. Treatment of hypertension reduces the risk 
for CV events and stroke by 20% and up to 40%, 
respectively.6–8 There are some differences between 
antihypertensive drug classes and some within-
class differences, in particular with β-blockers.9 
Thus, drugs that possess pleiotropic effects beyond 
BP lowering, such as improvement of endothelial 
function via increased bioavailability of NO, may 
be of particular interest.

Endothelial dysfunction is associated with hyper-
tension and other conventional CV risk factors, 
including hypercholesterolemia, diabetes, smoking, 
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and aging,10 and is a significant independent risk 
factor for CV events in hypertensive patients.11 
Impaired NO bioactivity plays a major role in 
endothelial dysfunction.12 Understanding the role 
of NO in regulating BP may have implications for 
improving hypertension treatment and reducing 
the risk of CV morbidity and mortality. This article 
reviews the association between impaired NO 
bioactivity and hypertension and the potential for 
therapeutic modulation of NO to reduce BP.

NO, ENDOTHELIAL FUNCTION, AND BP
NO is a simple but pluripotent molecule that is 
predominantly synthesized in the vascular endo-
thelium. NO is generated from L-arginine by endo-
thelial NO synthase (eNOS), which metabolizes 
L-arginine to NO. NO stimulates guanylyl cyclase 
to form 3ʹ,5ʹ-cyclic guanosine monophosphate, 
which results in vasodilatation of vascular smooth 
muscle cells, prevention of platelet adhesion and 
aggregation, and exertion of anti-inflammatory, 
antiproliferative, and antimigratory effects on leu-
kocytes, endothelial cells, and vascular smooth 
muscle cells, thus providing protection from ath-
erosclerosis (Figure 1).

Attenuated NO bioavailability, the main char-
acteristic of endothelial dysfunction, is present in 
arterial hypertension.10,13,14 Hypertensive subjects 
have increased generation of reactive oxygen spe-
cies (ROS), which scavenge NO, thereby reducing 
NO bioavailability. A decade ago it was shown 
in animal models that deletion of the eNOS gene 
(eNOS–/–) as well as chronic inhibition of NO 
synthesis (NOS) with Nω-nitro-L-arginine methyl 
ester (L-NAME) leads to the development of 
arterial hypertension.15,16 L-NAME infusion also 
induces endothelial dysfunction in humans,17 as 
does the NOS inhibitor NG-monomethyl-L-argi-
nine (L-NMMA) (Figure 2).18

NO bioavailability can be improved with phar-
macologic and nonpharmacologic approaches. 
Regular physical exercise improves endothelial 
function in hypertensive subjects,19 and benefi-
cial effects of restored NOS by administration 
of NOS cofactors such as tetrahydrobiopterin 
(BH4) or L-arginine have been demonstrated in 
several animal models as well as in patients. BP 
increases are prevented20,21 and endothelial dys-
function is improved after administration of BH4 
in insulin-resistant rats,22 in healthy subjects with 

Figure 1. Endothelium-derived vasoactive substances. Nitric oxide (NO) is released from endothelial cells in response 
to shear stress and activation of a variety of receptors. NO exerts vasodilating and antiproliferative effects on smooth 
muscle cells and inhibits thrombocyte aggregation and leukocyte adhesion. Endothelin-1 (ET-1) exerts its major vascular 
effects—vasoconstriction and cell proliferation—through activation of specific endothelin-A (ETA) receptors on vascular 
smooth muscle cells. In contrast, endothelin B (ETB) receptors mediate vasodilation via release of NO and prostacyclin. 
In addition, ETB receptors in the lung were shown to be a major pathway for the clearance of ET-1 from plasma. AI indi-
cates angiotensin I; AII, angiotensin II; Thr, thrombine; TGFβ1, transforming growth factor β; AcCh, acetylcholine; 5-HT, 
5-hydroxytryptamine (serotonin); ADP, adenosine diphosphate; BK, bradykinin; ACE, angiotensin-converting enzyme; 
AT1, angiotensin II type 1 receptor; T, thromboxane receptor; bET-1, big ET-1; ECE, endothelin-converting enzyme; M, 
muscarinergic receptor; S1, serotoninergic receptor; B2, bradykinin receptor; NOS, NO synthase; L-Arg, L-arginine; EDHF, 
endothelium-derived hyperpolarizing factor; TXA2, thromboxane; PGH2, prostaglandin H2; PGI2, prostacyclin; cAMP, 
cyclic adenosine monophosphate; and cGMP, cyclic 3ʹ,5ʹ-guanosine monophosphate. Adapted from Lüscher et al.107
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glucose-induced impairment of endothelial func-
tion,23 and in patients with established coronary 
artery disease24 and chronic heart failure.25

Data concerning the effect of antihypertensive 
treatment with β-blockers on endothelial function 
depend on the specific β-blocker; the beneficial 
effect of an NO-releasing β-blocker, nebivolol, on 
endothelial function results from the increase in NO 
and not from the β-blocking effects of the drug.26 
Angiotensin-converting enzyme (ACE) inhibitors 
and angiotensin receptor blockers (ARBs) improve 
endothelial function partly independent of arte-
rial pressure reduction,27,28 and calcium antago-
nists (dihydropyridine-like agents in particular) 
improve endothelial dysfunction, accompanied by 
a simultaneous improvement in several markers of 
oxidative stress.29–31 These antioxidant actions are 
particularly important because oxidative stress, 
and the resulting scavenging of NO by excessive 
ROS, is believed to be a major cause of impaired 
NO bioactivity.32 The term oxidative stress refers 
to conditions under which excessive production of 
ROS, possibly triggered by CV risk factors such as 

hypertension, smoking, obesity and dyslipidemia, 
overcomes antioxidant defense mechanisms, such 
as NO bioactivity, leading to oxidation of biologic 
macromolecules including lipids, DNA, protein 
and carbohydrates, vascular inflammation, and the 
development of atherosclerosis and CV disease.32

While research data show that NO contributes 
to regulation of BP and that impaired NO bioac-
tivity is associated with hypertension, the etiology 
and mechanisms of these relationships, particu-
larly the question of whether impaired NO pre-
cedes or follows hypertension, remain unclear.33 
Impaired NO-dependent vasodilation has been 
shown to precede hypertension in black patients 
with normotension and in small studies involving 
normotensive offspring of hypertensive parents 
(Figure 3).34 A large trial of the Framingham 
Heart Study35 population (N=2883), however, 
found that the estimated heritability of endothelial 
function, measured as flow-mediated dilation of 
the brachial artery, was modest (0.14); this analy-
sis generally could not determine whether endo-
thelial dysfunction was a cause or consequence of 
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Figure 2. Bar graphs showing radial artery flow (mL/min) and radial artery diameter (mm) measured at baseline (Base) 
and during reactive hyperemia before and after infusion of NG-monomethyl-L-arginine (L-NMMA). All results are 
expressed as mean ± SEM of 8 subjects. *P<.01 vs base. †P<.05. ‡P<.01 vs corresponding control value. Reproduced 
with permission from Joannides et al.108
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hypertension. Potential mechanisms for the patho-
genic link between impaired NO and hypertension 
include defects in the L-arginine/NO pathway, 
leading to decreased NO production; genetic poly-
morphisms in eNOS; reduced availability of cofac-
tors essential to NO formation; increased levels of 
circulating NO inhibitors; and destruction of NO 
by ROS.32,34,36–40

Data on a possible genetic mechanism of NO 
impairment in hypertension have been inconsistent. 
Several studies have identified specific eNOS gene 
mutations as being significantly more prevalent in 
patients with hypertension than in normotensive 
subjects,41 while other studies found no association 
between these genotypes and hypertension.42,43 
These polymorphisms probably have only a small 
effect on NO production, however, and may only 
become significant in the presence of other risk fac-
tors or mechanisms.

In addition, the reduction of NO cofactors and 
the increase of NO inhibitors may be correlated with 
impaired NO bioactivity; these mechanisms, howev-
er, are only 2 of many factors in oxidative stress that 
may originate with preexisting systemic vascular dis-
ease states, such as hypertension and dyslipidemia.44

HYPERTENSION, INFLAMMATION, AND 
OXIDATIVE STRESS
An increasing body of evidence suggests that low-
grade inflammation and oxidative stress account 
in part for hypertension-induced endothelial dys-
function and that C-reactive protein (CRP) levels 
may be associated with the future development of 
hypertension.32,45,46 Women with baseline CRP lev-
els >3.5 mg/L have higher rates of hypertension and 
self-reported systolic BPs of at least 140 mm Hg or 
diastolic BPs of at least 90 mm Hg.46 In addition, 
there is a linear relationship between increasing BP 
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Figure 3. In 34 normotensive subjects (mean age, 23 years) with a family history of essential hypertension, brachial 
artery vasodilation in response to acetylcholine, as represented by forearm blood flow (FBF) measured with strain-
gauge plethysmography, was significantly blunted compared with normotensive subjects with no family history of 
hypertension. FBF increased from 3.9 mL/min to a maximum of 18.9 mL/min with the highest dose of acetylcholine in 
hypertensive subjects, compared with an increase of 3.8 mL/min to 26.2 mL/min with the highest dose in normoten-
sive subjects (P<.01). The FBF response to sodium nitroprusside, a nonendothelium-dependent vasodilator, was similar 
between the 2 groups. *P<.01 hypertensive vs normotensive subjects. Reproduced with permission from Taddei et al.34
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and increasing CRP levels in women.45 During 8 
years of follow-up, both parameters were strong 
predictors for CV events, and the predictive values 
of CRP and elevated BP in combination are addi-
tive. In untreated human hypertension, CRP levels 
have recently been found to be increased dependent 
on systolic BP levels.47,48 Most importantly, an 
increase in CRP level is independently associated 
with elevated systolic BP and pulse pressure (but 
not diastolic BP), as well as with other classical CV 
risk factors.47 CRP is also a strong risk factor for 
ischemic stroke, independent of the severity of the 
underlying atherosclerotic disease.49

Although an active role of CRP in the develop-
ment of CV disease has been questioned,50 sys-
temic inflammation has been accepted as a CV risk 
factor.51 Engström and colleagues52 demonstrated 
that increased levels of inflammation-sensitive 
plasma proteins are associated with an increased 
incidence of hypertension.52 Chronic inflammation 
presents with activation of the cyclooxygenase sys-
tem, increased production of ROS, and increased 
synthesis of CRP and proinflammatory cytokines, 

which have been shown to correlate with arte-
rial stiffness in untreated hypertensive patients.53 
Data suggest a pivotal role for inflammation in the 
development of vascular disease and, in particular, 
hypertension. A causal link between CRP and 
hypertension, however, remains elusive. Recent 
data suggest that elevated CRP levels may not lead 
to elevated BP.54

Increased ROS and an altered balance between 
NO and ROS lead to impaired bioavailability of 
NO, resulting in decreased endothelium-dependent 
vasodilation, which, in turn, causes or exacerbates 
hypertension.44,55 Oxidation-induced impairment 
of NO also results in reduced opposition to 
the vasoconstrictive and hypertensive effects of 
angiotensin II. Angiotensin II decreases NO bio-
availability by promoting oxidative stress. ACE 
inhibitors have been shown to reduce CV events 
in several large-scale randomized trials.56,57 ARBs 
selectively block the angiotensin II type 1 receptor 
(Figure 4), thus inhibiting most of the deleteri-
ous effects of angiotensin II; they have also been 
shown to provide CV benefit,58–60 as have other 
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Figure 4. Cardiovascular regulation occurs with the interaction of the sympathetic nervous system (SNS) and the renin–
angiotensin system (RAS) with the vascular endothelium. AT1 indicates angiotensin II type 1 receptor; ET, endothelin; 
AT II, angiotensin II; ACEI, angiotensin-converting enzyme inhibitor; Ach, acetylcholine; M, muscarinergic receptor; 
ETB, endothelin B receptor; ARB, angiotensin receptor blocker; NO, nitric oxide; PGI2, prostacyclin; ETA, endothelin 
A receptor; and β2, bradykinin receptor. Reproduced with permission from Wenzel et al.105
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antihypertensive agents including diuretics, cal-
cium channel blockers, and β-blockers. The inte-
gral role of oxidative stress in NO impairment in 
hypertension has been demonstrated by in vivo and 
in vitro studies showing that substances that pro-
tect against superoxide-induced damage, such as 
superoxide dismutase and the antioxidant vitamin 
C, restore endothelium-dependent vasodilation in 
hypertensive animals and humans.61,62

Other important mechanisms of hypertension 
in which NO impairment plays a major role, with 
possible implications for antihypertensive treat-
ment, include arterial stiffness and chronic sympa-
thetic nervous system (SNS) activation (Figure 4).

ARTERIAL STIFFNESS
Recently, the significance of arterial stiffness, or 
rigidity, as a determinant of future CV events has 
been demonstrated in retrospective and prospec-
tive trials.63 Although aging is the major factor for 
vascular stiffness, several CV risk factors, such as 
smoking, hypertension, and diabetes mellitus, alter 

the structure and function of the vascular wall and 
endothelial components. Increased vascular stiff-
ness leads to greater afterload stress on the heart. 
Increased aortic wall stiffness raises resistance to 
stroke volume, necessitating a higher systolic pulse 
and increased systolic BP; this causes higher systolic 
pulse wave velocity (PWV) and premature wave 
reflection, arriving in late systole rather than early 
diastole.63,64 This effect further increases systolic 
BP and decreases diastolic BP, resulting in increased 
pulse pressure. PWV has been used as an index 
for vascular stiffness and as a surrogate marker 
for atherosclerosis in patients with hypertension, 
diabetes, and renal failure.65–67 The development 
of atherosclerosis contributes to arterial stiffness. 
Therefore, mechanisms involved in the development 
and progression of atherosclerosis, such as endo-
thelial dysfunction characterized by reduced NO 
bioavailability, directly impact arterial stiffness.

The assumption that the peripheral systemic 
pressure is an accurate reflection of central arterial 
BP may be an oversimplification. The relation-
ship between peripheral BP and central arterial BP 
is dependent on the hemodynamic performance 
of the vasculature, and this relationship can be 
profoundly disturbed if there is evidence of vas-
cular disease, particularly arteriosclerosis (arte-
rial aging, arterial stiffening, and loss of compli-
ance).68 Recent data suggest that pulse pressure 
in the central arteries is a better predictor of left 
ventricular mass and carotid intima thickness than 
peripheral pulse pressure. Moreover, in patients 70 
years and older and in those with end-stage renal 
failure, central but not peripheral pulse pressure 
is a powerful, independent predictor of CV and 
total mortality.67,69 Aortic PWV provides a more 
direct measure of large artery stiffness and can now 
be measured reliably using simple, noninvasive 
equipment. Using such techniques, aortic PWV 
has been shown to predict CV risk in patients with 
end-stage renal disease, among hypertensive indi-
viduals, in those with diabetes mellitus, and among 
older individuals.

In the Anglo-Scandinavian Cardiac Outcomes 
Trial (ASCOT),70 amlodipine-based treatment did 
not benefit the primary outcome of coronary heart 
disease events but was associated with significant 
reductions in major CV and renal outcomes and 
death, compared with an atenolol-based treatment 
program. In a substudy of ASCOT, the Conduit 
Artery Function Evaluation,71 researchers found 
that although arm BP differed little between treat-
ment groups, there were substantial reductions in 
trial-averaged values for central aortic pressures 
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Figure 5. Under resting conditions, infusion of NG-
monomethyl-L-arginine (L-NMMA) in 5 normotensive 
male volunteers increased mean arterial pressure (MAP) 
significantly by about 10% but had no effect on muscle 
sympathetic nerve activity (MSNA), measured by 
microelectrodes inserted selectively into muscle nerve 
fasciculi of the peroneal nerve posterior to the fibular 
head. By contrast, infusion of phenylephrine (PE), a 
nitric oxide–independent vasoconstrictor, increased 
MAP to a similar extent but also decreased MSNA by 
about 50%. Coinfusion of nitroprusside (NP) with 
L-NMMA resulted in reversal of the increase in MAP 
observed with L-NMMA alone, but also resulted in 
a significant increase in MSNA. *P<.05 vs baseline. 
Reproduced with permission from Owlya et al.98
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and hemodynamic indices in favor of the amlodip-
ine-based treatment. Central aortic systolic BP was 
lower by 4.3 mm Hg and the central aortic pulse 
pressure was lower by 3.0 mm Hg in the amlodip-
ine group. Thus, central pulse pressure appeared to 
be a significant determinant of total CV and renal 
events in this trial.

NO AND ARTERIAL STIFFNESS
Arterial stiffness is an important determinant of CV 
risk in hypertensive patients and can be assessed by 
intravascular measurements of PWV. It has been 
shown that endothelium-derived NO interacts 
with arterial elasticity in animal models.72 Data 
from studies in humans, however, are somewhat 
inconsistent. While infusion of L-NMMA increased 
PWV in healthy volunteers73 and augmentation 
index in sheep,74 other studies observed no effect 
on PWV in healthy volunteers.75,76 Wilkinson and 
associates74 found a significant increase in central 
pulse pressure (P<.001) but not in peripheral pulse 
pressure in sheep, suggesting that arterial stiff-
ness is most closely correlated with central BP. 
Hypertension associated with impaired NO bio-
availability/endothelial dysfunction, however, also 
causes pathologic structural changes and reduced 
compliance in small arteries, which may lead to 
reduced large artery compliance.64

The impact of antihypertensive drugs on arterial 
stiffness is controversial, and drugs that reduce BP 

as well as vascular stiffness may be more effective 
in reducing CV events. Interestingly, the NO-
stimulating β-blocker nebivolol, but not atenolol, 
increases arterial distensibility in vivo.26 The effect 
of nebivolol on PWV is significantly attenuated 
during coinfusion of L-NAME, demonstrating that 
nebivolol increases arterial distensibility via NO 
release.26 Thus, nebivolol may be of benefit in 
conditions of increased large artery stiffness, such 
as isolated systolic hypertension. Other antihyper-
tensive drugs, such as ACE inhibitors and ARBs, 
also improve arterial stiffness.77,78 This effect is at 
least in part NO-dependent because ACE inhibi-
tion with perindopril improves NO-dependent 
endothelial function in conduit arteries.79 Other 
antihypertensive drugs, such as calcium channel 
blockers, also improve arterial distensibility and 
endothelial function in hypertensive patients.80,81

NO AND SNS ACTIVATION
There is growing evidence that NO not only has 
a direct effect on vascular tone but, in addition, 
impacts vascular tone via interaction with the 
autonomic nervous system (central and at their 
peripheral effector sites), resulting in sympathoin-
hibitory effects in animals82 and humans.83 This 
may also play an important role in the pathogen-
esis of arterial hypertension.84

The SNS represents a major regulatory mecha-
nism for the short- and long-term adjustments of 
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Figure 6. Muscle sympathetic nerve activity (MSNA) as assessed by microneurography was significantly decreased 
in hypertensive patients after 12 weeks of treatment with losartan (from 52±3.5 to 46±4.2 bursts/min; P=.022) (A). 
Baroreceptor sensitivity was significantly enhanced after 12 weeks of treatment with losartan (from 3.2±1.3 to 4.9±1.8 
ms/mm Hg; P=.007) (B).
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Figure 7. Interaction of the sympathetic nervous system (SNS) with the renin–angiotensin system (RAS). ACE indicates 
angiotensin-converting enzyme; AII, angiotensin II; NO, nitric oxide; and ET-1, endothelin-1. Adapted from Wenzel et al.105
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the CV system and is an important mediator of 
vascular tone in humans. Its activity is stimulated 
by mental stress, pain, cold, exercise, and certain 
disease states.85,86 Indeed, borderline and essential 
hypertension as well as accelerated hypertension 
are associated with sympathetic activation.87–89 
Because normotensive offspring of hypertensive 
parents exhibit exaggerated response of muscle 
sympathetic nerve activity (MSNA) to mental 
stress, the SNS may be involved in the development 
of hypertension.85 The exact mechanisms and the 
interactions with NO, however, are not yet fully 
understood and may differ in acute and chronic 
settings, and in central and peripheral systems.

In animal models, it has been shown that NO 
regulates vasomotor tone and arterial pressure, at 
least in part by modulation of central sympathetic 
neural outflow by neuronal NO in the brain stem.84 
Intravenous infusion of NOS inhibitors reduces NO 
bioavailability and increases BP,90 an effect that is 
accompanied by a decrease in sympathetic nerve 
activity.91 This suggests that an acute BP increase 
might not initially be mediated by the SNS. During 
chronic NOS blockade in hypertension, however, 
the SNS seems to play an important role, because 
its activity is amplified.92 This sympathoexcitatory 
effect is more marked after sinoaortic denervation, 
indicating that sympathetic activation after NOS 
blockade is buffered by arterial baroreflexes.93 The 
sympathetic activation and pressor effects appear 
to be mediated by central neural action. In rats, 
the intracerebroventricular injection of L-NMMA 
(at doses that have no effect when administrated 
systemically) induces sympathetic activation and 
hypertension,92,94 while the application of NO 
donors to the nucleus tractus solitarius or the hypo-
thalamus of rats produces hypotension.82,95

Experimental data in humans are limited. While 
most data are consistent with the results obtained in 
animal models, others have found no evidence for a 
role of NO in the regulation of sympathetic outflow. 
In one study, the BP increase observed with NO 
inhibition via L-NMMA infusion in healthy human 
subjects was accompanied by significant decreases 
in heart rate and MSNA, which were similar to the 
effects of infusion of phenylephrine (an NO-indepen-
dent vasoconstrictor), suggesting no apparent effect 
of NO on central sympathetic outflow.96 Another 
study found that while L-NMMA infusion raised BP 
in 8 healthy subjects, the exercise-induced increase 
in MSNA during head-up tilt was similar with and 
without L-NMMA infusion.97 In contrast, a study 
in 15 healthy male volunteers found that infusion of 
L-NMMA at rest increased BP significantly but had 

no effect on MSNA, while phenylephrine infusion 
resulted in a similar BP increase; a 50% decrease in 
MSNA was also documented, probably evoked by 
the baroreflex response to increased BP. Hence, NO 
blockade appeared to counteract this sympathetic 
response (Figure 5).98 When sodium nitroprusside 
was coinfused with L-NMMA, the increase in BP 
was abolished, but MSNA increased significantly. 
These findings suggest that inhibition of NO had 
sympathoexcitatory effects that were masked by the 
inhibitory response of the baroreflexes, providing 
the first indication that NO regulates central SNS 
outflow in humans and that neuronal NO as well as 
endothelial NO mediate vasomotor tone.98

A subsequent clinical study found that while 
NO inhibition with L-NAME induced significant 
BP increases in healthy normotensive subjects 
(P<.001), α-adrenergic blockade with phentol-
amine attenuated the L-NAME-induced BP increase 
by 40% (P<.05), indicating a sympathetic compo-
nent in NO regulation of BP.99 The mechanisms of 
NO regulation of SNS outflow are complex and 
not entirely understood, however, and may involve 
multiple modulating factors, including background 
angiotensin II levels, the cholinergic nervous sys-
tem, and baroreceptor input.84,100 If the role of 
neuronal NO in regulation of SNS outflow and BP 
can be clearly established, then antihypertensive 
therapies that target this mechanism may be par-
ticularly effective in some patients.

NO has also been shown to modulate sympa-
thetic tone peripherally.101,102 Therefore, impor-
tant interactions in the vasculature, between the 
SNS and the peripheral L-arginine–NO system in 
the regulation of the vascular tone in humans, must 
be postulated.

SNS activity is affected by antihypertensive 
treatment. Indeed, in patients with renovascular 
hypertension characterized by a high plasma level 
of angiotensin II, SNS activity is increased.102 
Different responses occurred in patients given 
treatment with dihydralazine or enalapril: after 
lowering BP with the vasodilator dihydralazine, 
an increase in sympathetic nerve activity, heart 
rate, and plasma angiotensin II concentrations 
occurred, while no increase in sympathetic nerve 
activity was observed with enalapril (with the same 
arterial pressure–lowering effect). In hypertensive 
patients, the ARB losartan reduced sympathetic 
nerve activity as well as improved cardiac baro-
receptor sensitivity (Figure 6).103 In contrast to 
inhibitors of the renin–angiotensin system, calcium 
blockade has no effect on SNS activity in hyperten-
sion.104 Therefore, antihypertensive drugs seem to 
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act differently with respect to SNS activity, despite 
similar BP-reducing effects (Figure 7).105 This 
effect of renin–angiotensin system inhibitors on 
SNS activity could therefore explain the favorable 
effects of these drugs on the prognosis of patients 
with heart failure in whom activation of the 
SNS is an important prognostic factor. Generally, 
they may be particularly efficacious in blunting 
or inhibiting the unwanted effects of the SNS in 
patients with CV disease.106

CONCLUSIONS
Hypertension is increasingly understood to be a 
complex disorder that is strongly associated with 
other risk factors for CV disease. Clinical studies 
have demonstrated that patients with hypertension 
have a reduced vasodilatory response to endothe-
lium-dependent vasodilators, such as acetylcholine, 
and that blockade of NOS also blunts endothe-
lium-dependent vasodilation. In addition, there 
is evidence for a role of eNOS polymorphisms, 
and experimental studies suggest a possible genet-
ic component to impaired NO bioavailability 
and hypertension. The etiology of the association 
between impaired NO bioactivity and hyperten-
sion is complex, however, and has not been fully 
elucidated. Important mechanisms of hypertension 
and CV disease, in which impaired NO bioactivity 
plays a major role, include arterial stiffness and 
increased PWV, and possibly chronic SNS activa-
tion. Further clarification of the role of impaired 
NO bioactivity in these pathogenic mechanisms 
could have important implications for the manage-
ment of hypertension.
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