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Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two gasotransmitters that are produced in the 
human body and have a key role in many of the physiological activities of the various organ 
systems. Decreased NO bioavailability and deficiency of H2S are involved in the pathophysiology 
of type 2 diabetes and its complications. Restoration of NO levels have favorable metabolic effects 
in diabetes. The role of H2S in pathophysiology of diabetes is however controversial; H2S 
production is decreased during development of obesity, diabetes, and 8 its complications, 
suggesting the potential therapeutic effects of H2S. On the other hand, 9 increased H2S levels 
disturb the pancreatic β-cell function and decrease insulin secretion. In addition, there appear to be 
important interactions between NO and H2S at the levels of both biosynthesis and signaling 
pathways, yet clear an insight into this relationship is lacking. H2S potentiates the effects of NO in 
the cardiovascular system as well as NO release from its storage pools. Likewise, NO increases the 
activity and the expression of H2S-generating enzymes. Inhibition of NO production leads to 
elimination/attenuation of the cardioprotective effects of H2S. Regarding the increasing interest in 
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the therapeutic applications of NO or H2S-releasing molecules in a variety of diseases, particularly 
in the cardiovascular disorders, much is to be learned about their function in glucose/insulin 
metabolism, especially in diabetes. The aim of this 18 review is to provide a better understanding 
of the individual and the interactive roles of NO and 19 H2S in carbohydrate metabolism.
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1. Introduction
Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) collectively are 
known as gasotransmitters [1]. Although all three are considered to be toxic gases, they are 
nevertheless synthesized in the human body and play a key role in many of the physiological 
activities of the various organ systems [1–7]. Although the origins of NO go back to the late 
eighteenth century, its biological role was recognized in 1980 [8] and its vasorelaxatory 
effects were established a few years later in 1987 [9]. In comparison, H2S is relatively a new 
player on the scene and the gradual discovery of H2S-producing enzymes has shed more 
light on its physiological functions 15 and cellular signaling.

Decreased NO bioavailability and deficiency of H2S are considered to be involved in 
pathophysiology of many disease such as type 2 diabetes [10–12]. Restoration of NO levels 
has been associated with many favorable metabolic effects in type 2 diabetes [10, 13, 14]. 
The role of H2S in pathophysiology of diabetes is however controversial, as both inhibition 
and stimulation of the H2S system have been suggested to be potential therapeutic 
approaches [15, 16].

There are many similarities between the biological characteristics of NO and H2S in terms 
of their biosynthesis, biological targets, effects, metabolism, and elimination. In addition, 
these molecules regulate many physiological functions with some cross talk between the 
enzymes that are involved in their generation and also the pathways that these two 
gasotransmitters affect (reviewed in [17, 18]). For example, both NO and H2S are well 
known antioxidants and recently it was demonstrated that H2S at low doses potentiates the 
anti-oxidative effects of NO in diabetic rats [19]. Cross talk between H2S and NO was 
initially reported in 1997 by Hosoki et al. who showed that H2S at a concentration that did 
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not produce any appreciable vascular relaxation, it potentiated the vasorelaxatory effects of 
NO [20]. While the individual physiological functions of H2S and NO as well as their 
potential relationship in many organ systems are extensively studied, our understanding 
about their potential roles in regulation of carbohydrate metabolism in particular the role of 
H2S is woefully incomplete. This review discusses the effects of NO and 10 H2S and also 
their interactions in carbohydrate metabolism.

2. Nitric oxide synthesis
NO is produced in all tissues [21–24] by NO synthase (NOS)-dependent and independent 
pathways (Figure 1) [25, 26]. In mice, total NO formation has been reported to be about 0.2 
mmol/kg/day of which approximately 70% is derived from endothelial NOS (eNOS, NOS-3) 
[10]. In Wistar rats and humans, the rate of NO production is about 0.33–0.85µmol/kg/h and 
0.9 µmol/kg/h, respectively [27–30].

2.1. NOS-dependent NO synthesis
In NOS-dependent pathway, NO is produced from L-arginine (the L-arginine-NO pathway) 
by the three isoforms of NOS namely, neuronal (nNOS/NOS-1), inducible (iNOS/NOS-2), 
and eNOS/NOS-3 which are heme-containing dioxygenases enzymes [31–34]. These 
isoforms are active as homodimers [35–38] and proper dimerization is critical for their 
activity [39]; L-arginine, tetrahydrobiopterin (BH4), and heme are essential for stabilizing 
the active dimeric form of all NOS isoforms [38]. NOS monomers cannot catalyze NO 
formation and have a limited capacity to produce superoxide anions [37]. These isoforms 
vary in amino acid sequence, cellular location, function, and post-translational modifications 
[35, 40]. eNOS which produces relatively low quantities of NO, is mostly expressed in the 
vascular endothelium, but has also been found in epithelial cells, neurons, and 
cardiomyocytes as well as in hepatocytes and adipocytes [41, 42]. nNOS is expressed to 
highest relative abundance in neurons, skeletal muscle, and epithelial cells [43, 44]. eNOS 
and nNOS are firmly regulated through phosphorylation, compartmentalization in caveolae, 
calcium/calmodulin, and interact with plasma membrane ionotropic receptors [45]. iNOS is 
primarily identified in macrophages but its expression can be stimulated in virtually any 
cells or tissues and can produce large amounts of NO for long periods of time provided the 
necessary substrate is available [45, 46]. Some studies have also suggested a mitochondria-
localized NOS isoform [47]; however, the specific contribution of this isoform remains 
unclear.

All isoforms of NOS bind calmodulin as a prosthetic group; increased in intracellular Ca2+ 

levels are necessary for binding of calmodulin to eNOS and nNOS (half-maximal activity 
between 200–400 nM) while due to a different amino acid structure of the calmodulin-
binding site in iNOS, in this isoform calmodulin is constitutively active at extremely low 
intracellular Ca2+ concentrations (<40 nM) [35, 37]. Overproduction of NO by iNOS and 
also exogenous NO could lead to inhibition of eNOS and nNOS [32, 48]. Of note, the NO 
concentration necessary for the inhibition of eNOS and nNOS is considerably lower than 
that required for iNOS inhibition [48]. NO could be protective or toxic depending on its 
concentration, source, location, and environment [49].

Gheibi et al. Page 3

Biochem Pharmacol. Author manuscript; available in PMC 2021 June 01.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



For NO production, NOS isoforms catalyze oxidation of L-arginine to NO and L-citrulline 
[23, 50, 51]. Reduced nicotinamide-adenine-dinucleotide phosphate (NADPH) and 
molecular oxygen are co-substrates [36, 52] and flavin mononucleotide, flavin adenine 
dinucleotide, and BH4 are cofactors of NOS [36, 52], of which, BH4 is critical and rate-
limiting [23]. Exposure to oxidative stress such as seen in diabetes, results in the conversion 
of BH4 to 7,8- dihydrobiopterin (BH2) and thus leads to a dysfunctional eNOS, as BH2 is 
inactive as a cofactor and competes with BH4 for BH4 binding [53]. Anti-oxidants like 
vitamin C and folate increase BH4 bioavailability and could affect NO formation [23].

2.2. NOS-independent NO synthesis
NOS-independent NO production from nitrate and nitrite was initially reported in 1994 in 
the stomach following protonation of swallowed salivary nitrite [54, 55]. Decreased NOS-
derived NO production in tissues makes the nitrate-nitrite-NO pathway important [22]. 
Oxidation of NOS-derived NO as well as direct exposure through the diet are two major 
sources of nitrate in mammals [56]. Total body pool of nitrate is about 0.53 and 0.47 mM in 
men and women, respectively [57]; the relative contribution of the dietary source and NOS-
derived NO to the total body pool of nitrate varies, but with a moderately high intake of 
green leafy vegetables (~200 g per day), the dietary source clearly dominates [58].

About 25% (20–28%) of circulating nitrate (from diet or endogenous NO) is actively taken 
up by the salivary glands and concentrated by a factor of 10 in about 5 hours [59–63]; nitrate 
is reduced to the more reactive nitrite anion (NO2−) by the oral commensal bacteria with 
potent nitrate reductase enzymes [64]. For this reason, the salivary nitrate and nitrite 
concentrations are normally 10–100 and 1000-fold higher than their plasma levels, 
respectively [65, 66]. After oral loading, nitrate/nitrite is rapidly absorbed in the duodenum 
and jejunum [10, 67]. In the stomach, part of this nitrite is reduced to NO but most of it is 
absorbed to the circulation [10, 60, 68]. Nitrite reduction to NO in blood and tissues could 
be enzymatic or non-enzymatic [64, 69–71], which is generally enhanced during hypoxic, 
ischemic, and acidic conditions [32, 46, 50, 64, 68–71].

3. Nitric oxide signaling pathways
Actions of NO could be cyclic guanosine monophosphate (cGMP)-dependent and/or cGMP 
independent (mostly reactive nitrogen species-mediated) [72]. cGMP-dependent signaling 
pathway is the most important physiologic signaling pathway activated by NO [26, 65, 73–
75]. In this pathway, only low concentrations of NO (5–10 nM) are required to activate 
guanylyl cyclase (GC) [36, 74, 76], which converts guanosine triphosphate to cGMP [36]. 
GC has two isoforms: soluble (sGC is cytosolic) and membrane (particulate), of which, sGC 
is the receptor for NO [36]. sGC is a heterodimer of α and β subunits which contains a 
ferrous heme prosthetic group on histidine 105 residue of the β subunit [36]. When NO 
binds to the ferrous heme iron, it causes disruption of histidine 105 and inhibition of the 
catalytic activity of sGC by the heme is overcomed. The catalytic domain near the C-
terminal of the α and β subunits is then activated resulting in an increase in Vmax and a 
decrease in Km of the enzyme [36]. Elevated cGMP levels activate protein kinase G (PKG), 
which is a serine/threonine kinase and exists as a homodimer [35]. PKG has two isoforms: 
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PKGI and PKGII [77]; PKGI is the common isoform involved in NO/cGMP/PKG signaling 
pathway [78], which exerts its vasodilatory effects in the vascular smooth muscle cells 
through decreased [Ca2+]i [79] and Ca2+ sensitivity [80].

In addition to NO/cGMP/PKG signaling pathway, nitrosative post-translational 
modifications such as S-nitrosylation, which is a reversible covalent attachment of NO to 
cysteine residues of proteins, is a key mechanism for NO signaling [35, 73, 81]. S-
nitrosylation activates or inhibits protein function and therefore can be beneficial or 
detrimental [82, 83]. Despite the presence of cysteine residues on almost all proteins and 
production of NO by most cells, only some proteins are nitrosylated [84]. Specificity in S-
nitrosylation depends on the presence of metal ions (Mg2+ or Ca2+), local pH, and the acid-
base motifs [85].

4. Hydrogen sulfide synthesis
H2S is a colorless gas produced by enzymatic and non-enzymatic pathways in the body 
(Figure 1) [86]. Non-enzymatic production of H2S is responsible for a limited amount of 
H2S in mammalian cells [87] and is mediated through reducing elemental sulfur or organic 
polysulfides via glucose-supported and thiol-dependent as well as glutathione-dependent 
cellular reactions [88–90]. Enzymatic production of H2S is organ-specific and has been 
attributed to two pyridoxal 5′-phosphate (PLP) dependent enzymes, cystathionine β 
synthase (CBS, EC 4.2.1.22) and cystathionine γ lyase (CSE, EC 4.4.1.1), as well as a non-
PLP dependent enzyme, 3-mercaptopyruvate sulfurtransferase (3-MST, EC 2.8.1.2) along 
with cysteine aminotransferase (CAT, EC 2.6.1.3) [2, 86, 91]. CBS and CSE are heme-
proteins being in the cytosol, while 3-MST is a zinc-dependent protein, localized in the 
cytosol and in particular in the mitochondrial matrix, with an optimal pH of ~8 [86, 92].

L-cysteine, which is the major source of H2S production, is desulfhydrated during the 
transsulfuration pathway by all H2S-producing enzymes [2, 91]. H2S can also be produced 
from homocysteine; in normal conditions, about 70% of H2S is produced from L-cysteine 
and 30% from homocysteine [93]. An additional biosynthetic pathway for H2S production 
has also been reported from D-cysteine involving 3-MST and D-amino acid oxidase [94]. 
This pathway operates predominantly in the cerebellum and the kidneys. In the cerebellum it 
protects the cerebellar neurons from oxidative stress and in the kidneys, it attenuates 
ischemia-reperfusion injury more effectively than L-cysteine [94].

Tissue production of H2S and in particular the liver contributes to plasma level of H2S [95]. 
Using a polarographic H2S sensor, rate of H2S production in rat liver, brain, aorta, and heart 
is 12.3 ± 4.6, 10.6 ± 3.2, 5.8 ± 1.7, and 1.1 ± 0.3 pmol/s/mg protein, respectively [96]. 
Concentration of H2S in the plasma and tissue is under 1 µM, however using the methylene 
blue method and S2− ion selective electrodes, which are the most commonly employed 
methods, artificially inflated H2S concentrations and values from 20 to 300 µM are still 
being reported as “physiological” [97]. H2S at high concentrations (> 700 ppm or ~ 20,000 
µM) is lethal to both 10 humans and animals [98].
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H2S is a weak acid and equilibrates with hydrosulfide anions (HS−, pKa 7.04 and S2−, pKa 
11.96) in aqueous solution; with a pKa1 value of 6.76 and pKa2 >12 at 37 °C [17, 99], 
18.5% of H2S remains undissociated at physiologic pH=7.40 [99]. H2S dissolves well in 
lipids and its solubility is 5-fold higher than in water and therefore can freely penetrate cells 
[99]; while HS− does not pass. Much of the inactivation of H2S occurs through 
mitochondrial oxidation during three consecutive reactions; two membrane-bound sulfide: 
quinone oxidoreductases and a sulfur dioxygenase are involved in oxidation of sulfide to 
thiosulfate [100].

5. H2S signaling pathways
It is believed that most of H2S signaling is done through S-sulfhydration of target proteins, a 
reaction which transfers a sulfhydryl group (-SH) to a cysteine residue of a protein to form a 
hydropersulfid moiety (-SSH) [101, 102] or persulfide group [103]. S-sulfhydration or more 
correctly sulfuration of a protein modifies its functions, stability, and localization within the 
cells [104]. S-sulfhydration also contributes to modification of inflammation, endoplasmic 
reticulum (ER) stress signaling and vascular tone [104]. Regulation of ion channels via S-
sulfhydration has been reported in several studies; S-sulfhydration of adenosine triphosphate 
(ATP)-dependent K+ channels (KATP) activates it by decreasing ATP binding and increasing 
phosphatidylinositol 4, 5-bisphosphate (PIP2) binding; S-sulfhydration also activates small 
and intermediate calcium-activated potassium channels (SKCa and IKCa) in vascular 
endothelial cells [95]. In addition, S-sulfhydration of inositol-3-phosphate receptor (IP3R) 
inhibits Ca2+ release from the ER [103].

6. Role of NO in carbohydrate metabolism
6.1. Insulin secretion and NO

Glucose enters the pancreatic β-cells through a low affinity glucose transporter (GLUT-2). 
Glucose is phosphorylated by glucokinase and pyruvate is generated through glycolysis in 
the cytoplasm; pyruvate is then metabolized by pyruvate carboxylase and pyruvate 
dehydrogenase and passes into the mitochondria where it increases the cytoplasmic ATP/
adenosine diphosphate (ADP) ratio; increased ATP/ADP ratio causes closure of KATP 
channels [105, 106]. In the β-cells, KATP channels are the primary determinant of the 
membrane potential, so closure of these channels causes membrane depolarization and the 
subsequent activation of L-type voltage-dependent Ca2+ channels (VDCC). Elevation of 
cytosolic free Ca2+ concentrations ([Ca2+]i) is followed by insulin vesicle exocytosis [105], 
which is mediated by SNAp REceptors (SNARE), located in both vesicle (v-SNAREs) and 
target (t-SNAREs) membrane. Syntaxin and synaptosome associated protein-25 (SNAP-25) 
families are known as t-SNARE and v-SNAREs including the vesicle-associated membrane 
proteins (VAMPs) [107].

Expression of all three isoforms of NOS has been reported in the pancreatic β-cells [56, 106, 
108–110]. The role of NO in insulin secretion is controversial; iNOS-derived NO decreases, 
while eNOS-derived NO increases insulin secretion [32, 111]. In addition, NO stimulates the 
activity of the insulin gene promoter, with comparable increases in endogenous insulin 
mRNA levels in both Min6 β-cells (a pancreatic β-cell line derived from transgenic mouse 
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expressing the large T-antigen of SV40 [112]) and isolated rat islets of Langerhans [113]. 
Both glucose and insulin increase NO production in β-cells [114]; glucose-induced NO 
production at physiological concentrations increases insulin secretion, however, higher NO 
levels inhibit insulin secretion [114]. By contrast, it has been reported that both eNOS- and 
iNOS-activity are greatly increased by high glucose concentrations (20 mM) in intact islets 
from freely fed mice; fasting induces islet iNOS activity at both physiological (7 mM) and 
high (20 mM) glucose concentrations; inhibition of NOS by L-NAME (L-NG-Nitroarginine 
methyl ester) increases insulin secretion both during freely fed conditions and after fasting 
[115].

Possible mechanisms for increased insulin secretion by NO include: a) mitochondrial 
depolarization, which induces calcium release from the mitochondria and therefore increases 
insulin secretion [32], b) increase in islet blood flow, which supplies oxygen and nutrients to 
the islets [111], c) increased formation of mitochondrial reactive oxygen species (ROS), 
which is an obligatory signal for glucose-induced insulin secretion [111], and d) S-
nitrosylation of glucokinase (at cysteine-371) or syntaxin 4 (at cysteine-141), which 
facilitates glucose stimulated insulin secretion (Figure 2) [116]. Besides effects on insulin 
secretion, NO also inhibits an insulin-degrading enzyme (IDE) [117], a ubiquitously 
expressed cytosolic protease, by S-nitrosylation [116]. Inhibition of NOS causes glucose 
intolerance by doubling degradation of the secreted insulin and a 40% drop in β-cell glucose 
sensitivity in non-diabetic subjects [114, 116], suggesting that NO reduces the burden of β-
cells via inhibiting circulating insulin clearance [114]. Interleukin 1 beta (IL-1β) has been 
shown to be a contributing factor in β-cell dysfunction and decreased insulin secretion [118], 
nitrite-mediated NO decreased elevated IL-1β levels and increased insulin secretion in 
diabetic rats [13], indicating the anti-inflammatory effects of NO in increased insulin 
secretion.

6.2. Insulin signaling and NO
Insulin activates the insulin receptor (IR), which belongs to a tyrosine kinase family of 
transmembrane signaling proteins containing two extracellular α-subunits and two 
transmembrane β-subunits [118, 119]. When insulin binds to the α-subunits, this results 
results in tyrosine autophosphorylation of the β subunits [119]. Transphosphorylation among 
β-subunits leads to further kinase activity and recruitment and phosphorylation of receptor 
substrates including insulin receptor substrates (IRSs), SH2 (Src-homology2)-containing 
proteins (Shc), and Grb2 (Growth factor receptor binding protein 2)-associated binder 
(GAB) [119]. Phosphorylated IRSs provide docking sites for intracellular molecules 
containing SH2 domains including type 1A phosphatydylinositol (3, 4, 5)-triphosphate 
kinase (PI3K), which phosphorylates PIP2 to generate PI (3, 4, 5)-triphosphate (PIP3) [120]. 
PIP3 is an allosteric regulator of phosphoinositide-dependent kinase (PDK), which in turn 
leads to phosphorylation and activation of Akt (PKB), a serine/threonine protein kinase 
[120, 121]. Mitogen-activated protein kinase (MAPK) pathway and PI3K-Akt pathway are 
two major signaling pathways for insulin actions [122]. Most of insulin’s metabolic actions 
are mediated through the PI3K-Akt 19 pathway [119].
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In endothelial cells, insulin increases eNOS activity through the PI3K-Akt pathway (PI3K-
Akt-eNOS pathway) [37, 38, 121, 123] and provides an important step in regulating eNOS 
activity and glucose uptake [39]. Insulin by enhancing the synthesis and therefore 
availability of NADPH and BH4 in endothelial cells increases NO production [38]. In the 
PI3K-Akt-eNOS pathway, eNOS is activated by phosphorylation at serine 1177 [39, 123], 
which is not phosphorylated in the resting endothelial cells [37].

6.3. NO and glucose metabolism in skeletal muscle
nNOS is the main isoform of NOS in skeletal muscle and is called nNOSµ [43, 44]; eNOS is 
expressed at low levels and is mainly associated with the vascular endothelium [44]; 
although there is essentially no expression of iNOS in healthy skeletal muscle [43], it can 
however be induced in response to inflammatory cytokines [124]. All isoforms may 
transcriptionally be regulated by hypoxia; expressions of both vascular and skeletal muscle 
eNOS are increased by chronic exercise [125, 126]; eNOS in blood vessels is also increased 
by sheer stress [127]. Expression of nNOS is upregulated following muscle activity [125], 
crush injury [128], and 11 ageing [129], while it is downregulated following denervation 
[130].

NOS activity is regulated developmentally; total activity in diaphragm homogenates has 
been reported to be 40–45 pmol/min/mg protein from embryonic day 18 to postnatal day 1; 
the activity is decreased to ~25 pmol/min/mg protein by day 7 and then to the adult rate by 
day 30 [131]. Rat diaphragm produces ~3–5 pmol NO/min/mg muscle during passive 
incubation and is increased approximately six-fold in actively contracting muscle in a tissue 
bath [132, 133]. Resting cordofemoralis and quadratus femoralis muscles produces ~1 
pmol/min/mg muscle and this is increased two-three-fold by electrical stimulation in vitro 
[134]. Resting mouse diaphragm and soleus muscles produce ~13 pmol NO/min/mg and 
there is no difference between muscle types or between wild-type and eNOS-deficient mice 
[135].

Effect of NO on glucose uptake was first recognized when NOS inhibition was shown to 
attenuate 2-deoxyglucose uptake by rat limb muscle [134] both under basal conditions and 
during repetitive contractions in vitro [125]. These studies further demonstrated that 
exogenous NO was associated with an increase in 2-deoxyglucose uptake which was 
additive with the increase in uptake stimulated by insulin. Local infusion of the NOS 
inhibitor, NG-monomethyl-L-arginine (L-NMMA), into the femoral artery attenuates 
elevated skeletal muscle glucose uptake during moderate cycling exercise in healthy and 
type 2 diabetes participants and this effect occurs independently of blood flow [136]. In 
addition, NO stimulates rate of lactate release and glucose oxidation in isolated rat skeletal 
muscle [137], which is responsible for approximately 80% of insulin-stimulated glucose 
uptake [138].

The mechanism(s) by which NO stimulate glucose metabolism in skeletal muscle are not 
well characterized, however it has been demonstrated that NO decreases insulin resistance 
by increasing mRNA expression, protein levels, and translocation of GLUT4 in skeletal 
muscle of type 2 diabetic rats [13, 14, 121]. sGC/cGMP/PKG pathway as well as various 
post-translational protein modifications are involved in the NO-mediated intramuscular 
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GLUT4 translocation [137]. In resting muscle, using various NO donors, the cGMP 
analogue (8-bromo-cGMP), and phosphodiesterase 5 (PDE5) inhibitor (zaprinast), which 
prevents degradation of cGMP, increases cGMP level with a parallel increase in muscle 
glucose uptake [137, 139], whereas inhibiting sGC, decreases cGMP level and NO-induced 
glucose uptake [137]. In contrast to basal muscle glucose uptake, inhibition of sGC and PKG 
during ex vivo contraction have no effect on muscle glucose uptake [140], indicating that a 
cGMP/PKG-independent mechanism may be involved in NO-induced glucose uptake during 
contraction.

6.4. NO and glucose metabolism in adipose tissue
The expression of iNOS and eNOS have been reported in white adipose tissue [41]. eNOS is 
mostly membrane bound, while iNOS is found in the cytoplasm of adipocytes and 
macrophages. Although protein expression of nNOS has been reported in the cytoplasm and 
the mitochondria of adipocytes [141, 142], its expression does not appear to be present in 
significant amounts [143]. In addition, nitrate-mediated NO production is increased in 
response to hypoxia in rats and primary adipocytes [69].

In adipose tissue, NO stimulates insulin-dependent [144] and insulin-independent [41, 142] 
uptake and oxidation of glucose. NO-released from S-Nitrosoglutathione and S-Nitroso-N 
acetylpenicillamine (GSNO and SNAP) at low doses (<1 mM), increases while at high doses 
(10 and 20 mM) inhibits insulin-stimulated glucose uptake in isolated adipocytes of 
normoglycemic and streptozotocin (STZ)-induced diabetic rats [145]. Increased NO 
production also up-regulates brown adipocyte-associated genes [69], which can be a 
physiological adaptation of adipocytes undergoing hypertrophy in obesity.

In adipose tissue, the reaction between eNOS-mediated NO and sGC occurs at nM 
concentrations of NO [146, 147]. In addition, nitrite-mediated NO production by the nitrite 
reductase activity of xanthine oxidase (XO) also acts through the sGC/cGMP-signaling 
pathway [69]. NO scavenger (CPTIO) and GC inhibitor (LY83583) reduce SNP-stimulated 
glucose uptake to the basal level, suggesting that SNP-stimulated glucose uptake is mediated 
by NO and GC [41]. sGC/cGMP-dependent stimulation of AMP-activated protein kinase 
(AMPK) increases gene expression and PKG-dependent AMPK phosphorylation and 
therefor increases glucose uptake in adipose tissue [142]. The anti-inflammatory effects of 
NO may have an important role in decreasing insulin resistance, since in adipose tissue of 
diabetic rats; nitrite-derived NO in a dose-dependent manner reduced both mRNA levels of 
TNF-α and adipocyte size [149].

6.5. NO and glucose metabolism in hepatocytes
Glucose uptake by the liver is not affected by insulin directly and is accomplished passively 
via glucose transporters of which GLUT2 is the main hepatic glucose transporter [148]. The 
physiological control of glucose uptake across the plasma membrane of a hepatocyte 
depends on the intracellular glucose phosphorylation/dephosphorylation balance; however, 
insulin by stimulating the activity of glucokinase, it indirectly promotes hepatic glucose 
uptake (reviewed in [149]). Within the cells, hexokinase isoenzymes phosphorylate free 
glucose to glucose 6-phosphate which may follow three metabolic pathways: a) 
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isomerization into glucose 1-phosphate, that is transformed into UDP–glucose (precursor of 
glycogen), UDP–glucuronate and UDP–galactose; b) isomerization into fructose 6-
phosphate, which may either start the hexosamine pathway by combining with glutamine or 
continue into the glycolytic pathway to form pyruvate and then acetyl-CoA; c) oxidation 
into gluconolactone and start the pentose phosphate pathway [150].

In the liver, iNOS is expressed primarily in the cytoplasm of periportal hepatocytes and 
eNOS is expressed in hepatocytes, hepatic sinusoidal, endothelium of hepatic arteries, 
terminal hepatic venules, and epithelium of biliary ducts [42]. In the liver, NO induces 
mitochondrial biogenesis through an increase in cGMP levels and activation of peroxisome 
proliferator-activated receptor gamma coactivator-1α (PGC-1α) [151], decreases 
gluconeogenesis through decreasing mRNA expression of phosphoenolpyruvate 
carboxykinase (PEPCK) [53], inhibits glycogen synthesis by decreasing the activity of 
glycogen synthase [152], and reduces glycolysis. Besides hepatic glucose metabolism, NO is 
also involved in the regulation of lipid metabolism at the level of lipogenesis and lipolysis. 
Whether NO stimulates or inhibits lipid oxidation or synthesis appears to be dependent on 
the isoforms on NOS stimulated, tissue site and the intracellular redox state [142].

BH4 suppresses gluconeogenesis and increases AMPKα phosphorylation in hepatocytes 
from wild-type mice but not in hepatocytes isolated from eNOS−/− mice or in the presence 
of NOS inhibitors, suggesting that eNOS acts upstream of AMPK activation in suppression 
of hepatic gluconeogenesis by BH4 [53]. AMPK is a central regulator of glucose metabolism 
as liver-specific AMPK−/− mice exhibit hyperglycemia, glucose intolerance, and increased 
hepatic glucose production [153]. BH4 is mainly produced in the liver [154] and this is 
impaired by oxidative stress, such as seen in liver cirrhosis and diabetes [155, 156]. 
Furthermore, nitrate/nitrite-derived NO restores decreased phospho-AMPK (p-AMPK)/
AMPK ratios in the liver of high fat feeding mice and this effect is abolished in the presence 
of sGC inhibitors [157]. NO decreases glucose production from lactate and also by 
inhibiting the conversion of glycogen synthase b into synthase a, it inhibits glycogen 
synthesis as observed in isolated rat hepatocytes [152].

6.6. NO and insulin resistance
Insulin resistance can be defined as the reduced metabolic actions of insulin in target tissues 
namely liver, skeletal muscle, and adipose tissue [158]. Insulin responsiveness is defined as 
the maximal effect of insulin (Vmax or concentration of insulin exerting maximal biological 
response), and insulin sensitivity is defined as the insulin concentration that is required for 
50% of its maximal response (EC50/ED50) [158]. Defects in insulin receptor decreases 
insulin sensitivity while defects that are post-receptor, reduce its responsiveness [118].

Insulin resistance is associated with decreased NO bioavailability as eNOS−/− animals show 
a number of features of insulin resistance; in addition, polymorphisms in the eNOS gene are 
associated with insulin resistance susceptibility and metabolic syndrome in humans; 
inhibition of iNOS prevents while inhibition of eNOS and nNOS promotes insulin resistance 
[159, 160]. It is interesting to note that absence of eNOS promotes insulin resistance in both 
skeletal muscle and liver, while absence of nNOS impairs insulin sensitivity only in the liver 
of eNOS/nNOS doubleknockout mice [160]. Deletion of all isoforms of NOS (eNOS/nNOS/
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iNOS triple knockout) in mice, causes visceral obesity, hypertension, hypertriglyceridemia, 
and impaired glucose tolerance [161]. Insulin resistance caused by eNOS dysfunction is 
thought to be induced by endothelial dysfunction, which decreases skeletal muscle blood 
flow and glucose uptake [162]. eNOS−/− mice have lower glucose transport in skeletal 
muscle, indicating that eNOS also regulates glucose uptake in skeletal muscle [162].

Absence of iNOS improves glucose tolerance, normalizes insulin sensitivity, and prevents 
disorders in PI3K/Akt signaling in high fat-fed mice [163]. Increased iNOS expression is 
associated with increased S-nitrosation of the insulin receptor, IRS-1, and Akt in skeletal 
muscle of obese mice, suggesting that S-nitrosation of proteins in insulin signaling pathway 
is responsible for iNOS-induced insulin resistance [164]. Furthermore, free fatty acid (FFA) 
induced loss of pancreatic β-cells is due to NO overproduction, which leads to interleukin 1 
beta (IL-1β)-mediated β-cell dysfunction and death [108]. Selective overexpression of iNOS 
in liver causes hepatic insulin resistance, hyperglycemia and hyperinsulinemia [165]; the 
iNOS-specific inhibitor (L-NIL), reverses hyperglycemia, hyperinsulinemia, and insulin 
resistance in ob/ob mice [166].

These studies suggest that NOS isoforms play a central role in the regulation of glucose 
metabolism and insulin resistance and represent several therapeutic targets for management 
of type 2 diabetes.

6.7. Obesity and diabetes: The NO connection
NO bioavailability has been shown to be decreased in obesity and type 2 diabetes in animal 
models of obesity and diabetes as well as in obese and diabetic humans [32, 38, 121, 167]. 
Diminished NO bioavailability is an independent predictor of type 2 diabetes [116], 
hypertension [168], and atherosclerosis [168]. The role of glucose levels in NO production is 
controversial; it has been reported that NOS activity and subsequently NO production 
gradually increases due to an elevation in glucose concentrations within the pancreatic islets 
[169] and cultured human aortic endothelial cells (HAECs) [170]. In contrast, other groups 
have demonstrated that hyperglycemia contributes to endothelial dysfunction and leads to a 
decrease in NO bioavailability by inhibiting basal levels of eNOS expression/activity or 
increased NO quenching (increased NO oxidation) [32, 38, 39]. Moreover, it has been 
shown that uncoupling of NOS, led to decreased availability/transport of L-arginine, and an 
increased in arginase activity resulted in reduced NO production [57, 171, 172].

Diminished expression of NOS isoforms in particular, expression and activity of eNOS are 
found in both adipose tissue and skeletal muscle of obese humans and rodents [173–175]. 
Increased mRNA expression of caveolin-1 in adipose tissues is another mechanism for 
reduced eNOS-derived NO in obesity and type 2 diabetes [176]. Caveolae are a specialized 
type of lipid raft that appear in the plasma membrane, especially in adipocytes [176]. 
Caveolin-1, an essential protein for caveolae formation [177], directly binds to eNOS [168] 
and inhibits its activity [37] resulting in decreased NO production [168, 177]. Obesity and 
high-fat diets (HFD) by impairing eNOS phosphorylation at serine 1177, reduce eNOS 
activity [39, 46]. This site of phosphorylation is critical for NO production and can be 
regulated by Akt [178], which is activated by insulin.
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The reason for decreased eNOS phosphorylation in obesity and diabetes could be due to 
FFA-induced insulin resistance [179]. Elevated FFA which is observed in obesity and type 2 
diabetes, by stimulation of Toll-like receptor 4 (TLR4) or TLR2 and NFκB decreases PI3K-
Akt-mediated phosphorylation of eNOS at serine 1177 and therefore reduces eNOS activity 
[32]. Increases in tumor necrosis factor-α (TNF-α) that are seen in obesity and diabetes, by 
decreasing the stability of eNOS mRNA [180] result in downregulation of its expression and 
abundance [175, 181]. Increased TNF-α acutely increases eNOS activity most likely through 
activation of PI3K-Akt and sphingomyelinase/sphingosine-1-phosphate pathways; high 
levels of NO however through a negative feedback loop, leads to downregulation of eNOS 
[32]. Elevated ROS levels in obesity and type 2 diabetes [36, 37, 182] also cause PI3K-Akt-
eNOS pathway inhibition, which also 6 decreases NO bioavailability [39].

Expression of iNOS is increased in pancreatic β-cells [108], skeletal muscle [183], liver 
[166], and adipose tissue [184] in obesity and diabetes. Elevated TNF-α levels also increase 
iNOS in adipocytes which downregulates uncoupling protein 2 (UCP-2) [185] and decreases 
energy expenditure in adipose tissue.

In addition to decreases in eNOS-mediated NO production, uncoupling of NOS and NO 
quenching contribute to decreased NO bioavailability in obesity and diabetes. Obesity and 
diabetes are associated with decreased BH4 and increased BH2 levels; indeed, BH4 to BH2 
ratio is very critical in preventing glucose-induced eNOS uncoupling [186]. Uncoupling of 
nNOS has also been reported in penile arteries of obese rats and leads to nitrergic 
dysfunction, which is corrected by elevating BH4 levels [187].

Increased oxidative stress and inflammation are the major causes of increased NO quenching 
in obesity and diabetes. Uncoupled eNOS produces superoxide anion instead of NO [23, 
32], which rapidly combines with NO to produce peroxynitrite [36, 39]. On the other hand, 
excessive iNOS-derived NO increases the formation of peroxynitrite, which enhances eNOS 
uncoupling [32]. Elevated peroxynitrite levels in obesity and diabetes leads to oxidation, 
nitration, and S-nitrosylation of proteins, lipids, and DNA [37, 116]. Obesity and diabetes 
are associated with chronic inflammation [72, 188]. Inflammatory cytokines by decreasing 
the stability of eNOS mRNA reduce its expression [39]. Moreover, inflammatory cytokines 
upregulate cationic amino acid transporter-2 and downregulate cationic amino acid 
transporter-1, the arginine transporters that enhance L-arginine availability for iNOS and 
decrease it for eNOS [23].

6.8. NO and diabetes complications
NO exerts several protective roles in the prevention and treatment of diabetes complications 
[189, 190]; NO has cardioprotective effect in ischemia-reperfusion injury [190] and it 
improves endothelial dysfunction, cardiomyopathy, and nephropathy in animal models of 
diabetes [189–191].

6.8.1. NO and diabetic cardiovascular complications—It is well known that 
cardiovascular disease is a common complication of diabetes that can lead to a significant 
number of mortalities in diabetic patients; diabetic men and women being two times and five 
times more likely to suffer from congestive heart failure than non-diabetic individuals, 

Gheibi et al. Page 12

Biochem Pharmacol. Author manuscript; available in PMC 2021 June 01.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



respectively [192]. High glucose levels in diabetes cause multiple biochemical modifications 
in endothelial cells and myocytes; glucose enters the cells by GLUT-1, whose activity is 
insulin independent and is predominantly regulated by extracellular glucose concentrations 
[193][194]. Therefore, endothelial cells are more sensitive to hyperglycemia induced injury 
than other cell types. During diabetes, hyperglycemia causes activation of NAD(P)H oxidase 
(NOX), which by using NADPH converts oxygen into superoxide anions, which in turn 
reacts with NO and forms peroxynitrite (ONOO-); peroxynitrite then reacts with BH4, and 
that this loss of BH4 leads eNOS uncoupling in endothelial cells [192].

Blocking NO production with L-NAME in diabetic rats increase mean arterial pressure 
(MAP); suggesting that in the onset of diabetes, NO is important in prevention of 
hypertension, most likely through actions to maintain glomerular filtration and suppress 
renin secretion [189]. Nitrate-mediated NO in STZ-nicotinamide-induced diabetic rats was 
shown to provide cardioprotection against ischemia-reperfusion injury through regulating 
eNOS and iNOS expression and inhibiting lipid peroxidation in an ex vivo heart preparation 
[190]. Nitrite4 mediated NO in db/db mice subjected to permanent unilateral femoral artery 
ligation, restored ischemic hind limb blood flow in a vascular endothelial growth factor 
(VEGF)-dependent and NO-mediated manner [195]. L-arginine treatment improved 
hypertension and vascular responsiveness in STZ-induced diabetic rats [191]. SNP infusions 
in diabetic rats decreased MAP and increased vascular conductance (flow/MAP) in a dose-
dependent manner [196]. These findings indicate that impaired metabolic pathways in 
diabetes by decreasing NO synthesis and bioavailability lead to the impaired of 
endothelium-dependent vasodilatation, which could be improved by exogenous NO donors.

6.8.2. NO and renal complications of diabetes—Approximately 30% of patients 
with type 2 diabetes develop nephropathy; thus, it appears that hyperglycemia is necessary 
but not sufficient to result renal failure [197]. In the kidney, NO controls glomerular and 
renal hemodynamics and promotes natriuresis and diuresis [198], along with renal 
adaptation to dietary salt intake [199]. nNOS is mostly expressed in macula densa [200] and 
in small degree in specialized neurons within renal arteries of the hilus, arcuate and 
interlobular arteries [201]. eNOS is mostly found in renal vascular endothelium, although 
tubular expressions of eNOS have also been reported [201]. Although iNOS is weakly 
expressed in the kidney, its expression is dramatically increased by pro-inflammatory stimuli 
such as ischemia– reperfusion and lipopolysaccharide [202, 203]. Expression and activity of 
nNOS [204], iNOS [205], and eNOS [205] as well as NO metabolites [204, 206, 207] were 
found to be decreased in the kidney of diabetic animals.

Sodium nitrite, L-arginine, and daidzein (caveolin inhibitor) administration in HFD-STZ-
induced diabetic rats have been shown to reduce blood urea nitrogen (BUN), serum 
creatinine, proteinuria, urinary output, kidney weight/ body weight, and renal cortical 
collagen content [207]; however, treatment with L-NAME, decreased the L-arginine-and 
daidzein-induced ameliorative effects in diabetic nephropathy [207]. In addition, nitrite 
treatment improved some parameters of glomerular injury, including urinary protein and 
albumin excretion, histopathological glomerular hypertrophy, and mesangial matrix 
accumulation in STZ-induced diabetic rats [206]. Improvement in renal function following 
L-arginine treatment and deterioration following NOS inhibitor (Nω-Nitro-L-arginine) have 
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been reported in the ischemic acute renal failure of diabetic rats [208]. L-arginine prevents 
reduction in protein and mRNA expression of aquaporin-2, a water and sodium transporter 
in the renal outer medulla of diabetic rats [209].

7. Role of H2S in carbohydrate metabolism
The potential role of H2S in carbohydrate metabolism was first reported in 1990 when 
Hayden and colleagues demonstrated that H2S inhalation (2.2 mM) increased circulating 
glucose levels in postpartum rats [210]. Later on, a growing body of evidence showed that 
H2S is generated in pancreatic β-cells as well as in insulin target tissues including the liver, 
adipose tissue and skeletal muscles where it may control insulin secretion and insulin 
resistance.

7.1. H2S and the pancreas
Expressions of CSE [211–213], CBS [212–214], and 3-MST [215] have been documented in 
the pancreas; further analyses in the islets showed that expression of CSE, but not CBS, was 
dramatically increased following glucose stimulation, which suggests that CSE may act as 
an inducible H2S-generating enzyme, while CBS is constitutive [216]. CSE appears to be the 
major H2S-synthesisng enzyme in the pancreas, as most of the H2S produced from cultured 
insulinoma INS-1E cells was abolished after inhibition of CSE by propargylglycine (PPG) 
[211], and also following partially knockdown of the CSE gene, using an CSE-siRNA 
technique [211]. H2S production rate at basal glucose concentration is about 12 nmole/g/min 
in INS-1E cells [211], about 30 nmole/g/30 min in fresh rat pancreas [212], and 8 
nmole/g/min in isolated rat islets [213].

H2S protects pancreatic β-cells against apoptosis induced oxidative stress or glucotoxicity in 
mice treated with glucose (5 and 20 mM); in this study, both low and high-glucose 
concentrations increased CSE expression but CBS expression remained relatively constant, 
suggesting that CSE-mediated H2S may act as an “intrinsic brake” against glucose-induced 
apoptotic death in β-cells [216]. Exogenous H2S has also been shown to protect β-cells from 
apoptosis induced by hydrogen peroxide, fatty acids, and cytokines; and through 
phosphorylation and activation of Akt signaling, promote cell proliferation and survival 
[217]. H2S by reducing elevated thioredoxin binding protein-2 (TBP-2) expression in 
isolated islets of HFD-fed CSE knockout (CSE-KO) mice, protected β-cells from 
glucotoxicity-induced apoptosis [218]; considering the role of TBP-2 in β-cell apoptosis, it 
can be speculated that H2S may protect β-cells from glucotoxicity-induced apoptosis by 
suppressing TBP-2 expression levels.

Conversely, exogenous H2S or overexpression of CSE in INS-1E cells, reduced cell viability 
and induced apoptosis; in this study, H2S increased expression of ER stress indices such as 
binding of immunoglobulin protein (BiP), CCAAT/enhancer-binding protein homologous 
protein (CHOP), and sterol regulatory element-binding transcription factor 1 (SREBF1) 
[219], which play a key role in pancreatic β-cell apoptosis and development of diabetes 
[220]. These contradictory effects of H2S on β-cell apoptosis may be due to the different 
types of insulin secreting cells used in different studies and their sensitivity to H2S [218], 
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differences between exogenous and endogenous H2S [221], and differences in the dose and 
duration of exposure [222].

7.2. Insulin secretion and H2S
H2S can influence insulin secretion [211, 214, 223] and modulate circulating glucose levels 
[224]. Inhibitory effects of sodium hydrosulfide (NaSH, 10 µM-1 mM) and L-cysteine (0.1–
10 7 mM) on glucose (10 mM)-induced insulin secretion have been observed in both 
isolated mouse islets and pancreatic beta cell line, MIN6 cells, an effect that was not 
observed at a low glucose concentration (3 mM) [214]. In addition, NaSH treatment (100 
µM) inhibited insulin secretion by about 70% from HIT-T15 cells [225]. Overexpression of 
CSE in INS-1E cells virtually abolished high glucose (16 mM)-stimulated insulin secretion; 
however, basal insulin secretion was not altered [211]. NaSH at concentrations of 100 and 
300 µM decreased glucose-stimulated insulin secretion by about 26% and 45%, respectively 
from isolated mouse β-cells; moreover, glucose induced insulin release in CSE-KO mice 
was three times higher than wild-type mice [223]. Indeed, increased extracellular glucose 
levels have been shown to decrease intracellular H2S production followed by increased 
insulin secretion [211]. With an increase in glucose level from 5 mM to 16 mM, the insulin 
secretion became 3-fold greater in INS-1E cells [211]. Taken together, these studies showan 
inhibitory effect of H2S on glucose stimulated insulin secretion.

One of the mechanisms through which H2S inhibits insulin secretion is through opening of 
KATP channels, as the inhibitory effects of NaSH and L-cysteine on insulin secretion were 
reproduced after using tolbutamide (a KATP blocker), α-ketoisocaproate (a mitochondrial 
fuel), and high K+ condition (30 mmol/L) [214]. Similar conclusions were drawn by an 
independent group of investigators, who showed that endogenous H2S levels may be a 
switch for turning KATP channels on/off at different glucose concentrations in INS-1E cells 
[211]. Interaction of H2S with KATP channels seems to be mediated through functional 
manipulation, probably by decreasing selective cysteine residues of KATP channel protein, 
independent of cytosolic second messengers [211]. It has been suggested that S-
sulfhydration of KATP channels is an underlying mechanism by which H2S could influence 
insulin secretion (Figure 3) [222].

In a study by Kaneko et al., L-cysteine and NaSH inhibited glucose-induced [Ca2+]i 
oscillation without obvious changes in the mean [Ca2+]i value in mouse pancreatic β-cells 
[214]. L-cysteine and NaSH also inhibited Ca2+-stimulated insulin secretion from 
permeabilized islets (treated with 9 streptolysin-O; SLO); interestingly, NaSH and L-
cysteine also inhibited insulin release induced by the co-presence of guanosine 5′−0–3-
thiotriphosphate (GTPγS) and Ca2+ from SLO-treated islets, under this condition, [Ca2+]i is 
not altered by either Ca2+ influx or mobilization, because of its chelation by ethylene glycol-
bis (β-aminoethyl ether)-N,N,N’,N’-tetra acetic acid (EGTA) [214], indicating that the 
inhibitory effect of H2S on insulin release at least in part is independent of [Ca2+]i. This 
study also revealed that modulation of glucose metabolism in the pancreatic β-cells may be 
another mechanism which H2S inhibits insulin secretion, as NaSH and L-cysteine inhibited 
glucose-induced mitochondrial membrane hyperpolarization and ATP production [214].
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Inhibition of L-type VDCC is another mechanism through which H2S inhibits insulin 
secretion in β-cells. Tang and colleagues demonstrated that NaSH and ACS67, another H2S 
donor, decreased insulin secretion from pancreatic β-cell as well as L-type VDCC current 
density by 45% and 18%, respectively [223]. Baseline VDCC current was higher in β-cells 
of CSE-KO mice and PPG increased baseline Ca2+ current in β-cells of wild-type mice; in 
addition, Bay K-8644, the specific agonist of VDCC, increased glucose-induced insulin 
secretion, an effect which was abolished by NaSH [223].

Despite the reported inhibitory effects of H2S on insulin secretion from the pancreatic β-
cells, lower plasma H2S levels in type 2 diabetic patients may be a compensatory response 
[222], and contribute to the development of hyper-insulinemia to maintain normal glucose 
concentrations [222].

By contrast to these studies, the stimulatory effect of H2S on insulin secretion has been 
reported by Takahashi et al., who showed that inhibition of CBS by β-cyano-L-alanine, 
reduces cysteine hydropersulfide (Cys-SSH) levels, and 2-methylthio modification, as well 
as decreases in glucose-induced insulin release in two different β-cell lines were abolished 
by Cys-SSH precursor, Cys-S2-Cys, but not by NaSH [226]. Silencing of CBS or CSE by 
the respective siRNAs resulted in a decrease in 2-methylthio modification in HeLa cells 
concomitantly with reducing intracellular cysteine persulfide (Cys-SSH), one of the possible 
products of CBS and CSE-catalyzed reactions [226].

7.3. Glucose metabolism in skeletal muscle and H2S
Both CSE and CBS are expressed in human skeletal muscle cells [227]; although all H2S 
producing enzymes (CBS, CSE, 3-MST) are expressed in rat skeletal muscle, these enzymes 
surprisingly are absent in mice skeletal muscle [228]. The rate of H2S production in the 
skeletal muscles of Sprague-Dawley rats has been found to be 0.17 nmol/min/mg with an 
H2S content of 2.06 nmol/mg [228].

There is limited evidence demonstrating the potential role of H2S on carbohydrate 
metabolism in skeletal muscle. CSE gene knockdown resulted in a decrease in glucose 
uptake by cultured rat L6 myotubes and NaSH treatment at 25, 50, and 100 µM for 24h 
potentiated insulin-induced glucose uptake by 1.54, 1.72 and 2.06-fold, respectively, an 
effect which was mediated through increased phosphorylation of insulin receptors (IRs), 
PI3K, and Akt [229]. Moreover, NaSH (30 µmol/kg/day) increased phosphorylation of PI3K 
and Akt in skeletal muscles of Goto-Kakizaki rats, an experimental model of type 2 diabetes 
[229]. Inhalation of 5 mg/L H2S inhibited aerobic metabolism, resulting in a significant 
accumulation of circulating lactate during exercise in healthy men [230]. This metabolic 
shift was probably due to a decrease in citrate synthase levels, which is a rate limiting 
enzyme in the tricarboxylic acid (TCA) cycle in skeletal muscle [230].

H2S-mediated activation of Wnt/β-catenin signaling pathway [231] may partly elucidate the 
H2S effect on insulin sensitivity in skeletal muscle cells. Activation of skeletal muscle Wnt/
β-catenin signaling increases insulin sensitivity through decreasing intra-myocellular lipid 
deposition and down-regulation of SREBP-1c, inhibiting MAPK pathway, and also trough 
increasing activation of the Akt/PKB and AMPK pathways [232].
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7.4. Glucose metabolism in adipose tissue and H2S
H2S is produced in epidydimal, perirenal, and brown adipose tissue with the rate of 4.76, 
2.93, and 4.65 nmol/min/protein, respectively. In addition, H2S-producing rates in cultured 
adipocytes and preadipocytes were 2.89 and 2.17 nmol/min/mg protein, respectively [233]. 
Although both CBS and CSE are expressed in adipose tissue, CSE appears to be the main 
H2S-producing enzyme [233], as CSE inhibitors decreased H2S production by more than 
80% in adipose tissue.

Aging is associated with upregulation of CSE expression and H2S production in adipocytes 
while hyperglycemia through increases in ROS down-regulates CSE expression [233]. 
Moreover, CSE expression was higher in adipose tissue macrophages of obese animals; 
however, endogenous H2S level was lower, which indicates reduced H2S bioavailability in 
obesity [234]. Decreased H2S bioavailability in obesity activates store-operated Ca2+ entry 
pathway in adipose tissue macrophages and increases cytokine production [234]. CSE 
protein expression has been shown to be increased in lipopolysaccharides (LPS)-induced 
inflammation in a mouse macrophage cell line (RAW264.7 cells), whereas H2S level is 
decreased due to enhanced cellular demand and/or consumption of H2S [234]. Indeed, 
decreased H2S bioavailability following hyperglycemia and 5 obesity plays a key role in the 
development of metabolic syndrome [235].

H2S plays a regulatory role in adipogenesis [236] and adipose tissue metabolism [235]. 
Adipogenesis and adipose tissue maturation are promoted by endogenous and exogenous 
H2S [236]. Differentiation of 3T3L1 cells is associated with upregulation of all H2S-
producing enzymes (CBS, CSE, 3-MST) and incubation of preadipocytes with GYY4137 (a 
slow H2S releasing compound) or NaSH, increase adipocyte differentiation factors, such as 
proliferator11 activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α 
(CEBPα) [236].

The role of H2S on glucose uptake in adipose tissue and therefore development of insulin 
resistance is controversial as both inhibitory and stimulatory effects of H2S have been 
reported [233, 237–239]. H2S (10–1000 µM) as well as L-cysteine decreased basal and 
insulin-stimulated glucose uptake in the mature adipocytes, an effect which was reversed by 
CSE inhibitors (PPG or BCA) [233]. CSE expression and H2S production increased in 
adipose tissue of high fructose fed rats, which is a commonly used model of insulin 
resistance and hyperlipidemia [233]. Increased adipose tissue CSE-H2S system in insulin-
resistant rats correlated with impaired insulin-induced glucose uptake [233]. In this study, 
H2S-inhibited glucose uptake of adipocytes was mediated through PI3K but not KATP 
channel pathway, which may inhibit GLUT4 translocation [233]. These findings suggest that 
adipose-released H2S may contribute to the pathogenesis of insulin resistance and diabetes 
[233]. In addition, TNF-α inhibits insulin-stimulated glucose uptake of 3T3-L1 adipocytes, 
this effect is accompanied by an increase in CSE activity, expression, and H2S generation 
[240]. A CSE inhibitor attenuated the detrimental effect of TNF-α on insulin-stimulated 
glucose uptake of 3T3-L1 adipocytes; however, a CBS inhibitor had no effect [240]. The 
authors accordingly suggested that the detrimental effects of TNF-α on insulin sensitivity 
may be partially mediated by H2S and modulation of CSE-H2S 5 system can be a potential 
therapeutic approach for insulin resistance [240].
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By contrast, Manna et al. examined the effects of L-cysteine (100, 500, and 1000 µM) and 
Na2S (10 and 100 µM) on phosphatase and tensin homolog (PTEN), PI3K, PIP3, phospho-
AKT and glucose uptake in high glucose (25 mM)-treated 3T3L1 adipocyte cells. H2S 
decreased PTEN (a negative regulator of glucose utilization) and increased PI3K and PIP3 
levels, as well as restored phosphorylation of IRS1, phospho-AKT, and GLUT4 
translocation in adipocytes, and eventually increased glucose utilization [237]. The 
protective role of L-cysteine was blocked by PAG, in addition, H2S and L-cysteine had no 
effect on glucose utilization by cells cultured at normoglycemic conditions [237]. The same 
group also reported that hyperglycemia decreases CSE expression and H2S production by 
3T3-L1 cells and suggested that hyperglycemia-induced insulin resistance at least in part is 
mediated through downregulation of the CSE-H2S system [16].

Similarly, Cai et al. demonstrated that H2S gas and GYY4137 stimulate glucose uptake by 
3T3-L1 adipocytes which was associated with persulfidation of PPAR-γ at Cys139 [238]. 
H2S-stimulated glucose uptake was abolished when Cys139 was replaced by serine 
producing a mutant PPAR-γ; this mutant could not be persulfidated, indicating that PPARγ 
C139 site is a major sulhydration site [238]. In addition, CSE‒H2S inhibited adipose-tissue 
PDE activity whereas it increased PPARγ activity and adipocyte numbers in mice fed a 
HFD; H2S induced PPARγ sulfhydration and reduced insulin resistance but did not 
continuously increase obesity [238], which may explain why some obese patients (CSE‒
H2S system not downregulated) do not have diabetes [238]. H2S also inhibited lipolysis 
through the protein kinase A (PKA)perilipin/hormone-sensitive lipase pathway, which 
promotes and sensitizes insulin response in adipocytes [239].

Vitamin D has a favorable effect on insulin sensitivity and it is considered to be of potential 
value in management of type 2 diabetes. It has been shown that, 1, 25-
dihydroxycholecalciferol (1,25-(OH)2-D3), the active metabolite of vitamin D3, up-
regulates CSE expression and H2S production in 3T3-L1 adipocytes cultured in high glucose 
medium [16]. In addition, 1,25-(OH)2 D3 through increased IRS-1 phosphorylation, PI3K 
activity and Akt phosphorylation, increased insulin-stimulated glucose uptake, these effects 
were abolished by CSE inhibitor or CSE gene knockdown [16].

NaSH (25 and 50 µM) promoted insulin-stimulated glucose uptake in 3T3-L1 adipocytes; 
H2S increased phosphorylation of the insulin receptor β-subunit, PI3K activity and Akt 
phosphorylation in cells cultured at both normo- or hyperglycemic conditions [229]. NaSH 
also increased insulin receptor tyrosine phosphorylation and its kinase activity in a cell free 
system, indicating that insulin receptor may be the direct target for the stimulatory effects of 
H2S [229].

7.5. Effects of H2S on hepatic glucose metabolism
All three H2S-producing enzymes are expressed in the liver but H2S production seems to be 
primarily catalyzed by CSE [241, 242]. H2S plays an important role in glucose metabolism 
and insulin signaling in hepatocytes; H2S stimulates hepatic glucose production and 
activates gluconeogenesis and glycogenolysis [243]. CSE protein was shown to be 
downregulated upon starvation in murine liver extracts [244], and fasting-induced 
downregulation of CSE can prevent hepatic glucose production and release into the 
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circulation. Hepatic CBS expression is up-regulated in both prediabetic insulin-resistance 
and frank diabetic stages of Zucker diabetic fatty (ZDF) rats [245].

NaSH (100 µM) decreased glucose uptake and glycogen content in HepG2 cells; in addition, 
primary hepatocytes from CSE-KO mice showed a 2-fold increase in glucose consumption 
rate [246]. CSE-KO mice had higher glucose consumption and glycogen content in their 
liver tissues; however, lower glucose was produced by hepatocytes via gluconeogenesis and 
glycogenolysis pathways in these mice [246]. Overexpression of CSE in HepG2 cells, 
increased endogenous H2S production and decreased glycogen content [246]. Decreased 
AMPK activation and suppression of glucokinase activity were responsible for H2S-
downregulated glucose uptake and glycogen storage; furthermore, H2S-increased glucose 
production was mediated by inhibition of AKT signaling which is followed by activation of 
PEPCK [246]. H2S-increased PEPCK activity has also been reported to be induced by 
increased glucocorticoid receptor activity and decreased AMPK phosphorylation [221]. 
Similarly, activity of glucose 6-phosphatase and fructose-1,6-bisphosphatase, the rate-
limiting gluconeogenic enzymes, is promoted by H2S through S- sulfhydration [247]. H2S 
also increases the expression of theses enzymes indirectly through S- sulfhydration of the 
peroxisome proliferator-activated receptor gamma coactivator 1-ɑ (PGC-1ɑ) [221]. H2S-
induced glucose production is also mediated by S-sulfhydration and increased activity of 
pyruvate carboxylase, a key enzyme providing fuel for gluconeogenesis [248]. Taken 
together, these studies suggest that H2S may play a pivotal role in hepatic insulin resistance 
and is further involved in the pathogenesis of type 2 diabetes.

Mitochondrial dysfunction is associated with the pathogenesis of insulin resistance. CSE-
KO hepatocytes were shown to have less mitochondrial content and DNA which were 
restored by NaSH [249]; CSE-KO hepatocytes exhibited lower levels of transcription factors 
involved in mitochondrial biogenesis including nuclear respiratory factors-1 and −2 (NRF-1, 
NRF-2), PGC-1α, PGC-1β, and PGC-related protein (PPRC) [249]. NaSH treatment (30 
µM) upregulated PPRC by S-sulfhydration, yet downregulated PGC-1β protein levels [249]. 
Knockdown of either PGC-1α or PPRC reduced NaSH-induced mitochondrial biogenesis in 
hepatocytes, while knockdown of both genes completely abolished effects of NaSH on 
mitochondrial biogenesis [249].

7.6. Pathophysiology of diabetes: Role of H2S
H2S deficiency is related to the pathophysiology of diabetes; however, the potential role of 
H2S in diabetes seems to be complex. Contribution of H2S in the onset and progression of 
diabetes has been reported in several studies. Expressions of CSE and CBS mRNAs, as well 
as endogenous H2S production are higher in both the liver and pancreas of STZ-induced 
diabetic rats [212]. Similarly, activities of the hepatic CBS and CSE increased in STZ-
induced diabetic rats, this effect was normalized by insulin treatment [250]. Pancreatic CSE 
expression and H2S production are higher in ZDF rats than in Zucker fatty and Zucker lean 
rats [213]; PPG treatment of ZDF rats resulted in an increased serum insulin concentration 
and decreased hyperglycemia [213]. We recently showed that NaSH at high doses (1.6–5.6 
mg/kg) aggravated carbohydrate metabolism while at low doses (0.28 and 0.56 mg/kg) it had 
no effect [251]. A positive 18 correlation has been found between H2S concentration and 
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disrupted insulin secretion in pancreatic β-cells [252], suggesting that inhibition of 
pancreatic H2S may be a new therapeutic approach for the management of diabetes [213, 
252]. However, it has been suggested that hyperglycemia-induced pancreatic CSE 
overexpression in the early stages of diabetes, may have as a protective mechanism, as H2S 
neutralizes oxidative/nitrosative stress [15].

Conversely, endogenous H2S production and plasma H2S levels decreased in both non-obese 
diabetic mice [253], STZ-treated diabetic rats [12, 251] and patients with type 2 diabetes 
[11, 12] which was parallel with the severity of diabetes [11, 253], in particular in those with 
a history of cardiovascular disease [11]. Moreover, metformin administration in diabetic rats 
was associated with elevated H2S levels in the kidney, heart, liver, and brain [254]. 
Hyperglycemia causes H2S deficiency in endothelial cells and administration of H2S could 
be a potential therapeutic approach in hyperglycemia [255]. Indeed, high glucose levels have 
been shown to inhibit H2S production via specificity protein 1 (SP1) and p38 MAPK 
phosphorylation in INS-1E cells and freshly isolated rat pancreatic islets [256]. In addition, 
hyperglycemia and increased ROS levels decrease CSE expression [257] and increase H2S 
consumption [255], leading to lower H2S levels in diabetes.

To summarize, whether H2S has a beneficial or deleterious effects on glucose metabolism in 
type 2 diabetes is inconclusive and further studies are needed to clear the potential role of 
H2S manipulation in treatment of diabetes. Regarding the association between diabetes and 
H2S deficiency [12, 258], H2S modulation may have potential therapeutic effects in diabetes.

7.7. Diabetes complications and H2S
H2S plays multiple protective roles in the prevention and improvement of complications 
associated with diabetes [259]. Favorable effects of H2S have been reported in endothelial 
dysfunction, retinopathy, cardiomyopathy, and nephropathy [255, 260–262].

7.7.1. Diabetic cardiovascular complications and H2S—Increasing evidence 
indicates that H2S has multiple beneficial roles in diabetic cardiovascular complications. 
H2S attenuates the development of diabetic cardiomyopathy as exemplified by Barr and 
colleagues who examined the role of H2S in the pathogenesis of diabetic cardiomyopathy in 
mice that were fed a HFD [263]. These mice had reduced circulating and cardiac H2S levels, 
hallmark features of type-2 diabetes, and also marked cardiac dysfunction. H2S treatment 
restored sulfide levels and attenuated HFD-induced cardiac dysfunction; the protective 
effects of H2S were associated with the activation of adiponectin-AMPK signaling and 
suppression of HFD-induced ER stress [263]. Adiponectin plays an important role in 
maintaining cardiovascular health and there is a correlation between decreased adiponectin 
levels and increase cardiovascular risk [264]. Adiponectin delivers much of its metabolic-
regulatory effects through the induction of AMPK [265]. AMPK stimulates glucose 
transport by increasing the expression of GLUT4 and also modulates cardiac fatty acid 
oxidation and subsequent lipid accumulation through the phosphorylation and inhibition of 
acetyl-coenzyme A carboxylase [266].

NaSH administration was found to improve ventricular function and attenuate cardiac 
hypertrophy and myocardial fibrosis in STZ-induced diabetic rats [262]; NaSH also reduced 
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hyperglycemia-induce inflammation, oxidative stress and apoptosis in the cardiac tissue; 
favorable effects of NaSH were associated with increased activation of Nrf2 and protein 
expression of its downstream targets, increased activation of PI3K/Akt pathway and also 
blockade of c-Jun N-terminal kinase (JNK) and p38 MAPK pathways [262]. Similarly, using 
diabetic mice, Ye et al. demonstrated that the protective effects of NaSH on cardiac structure 
and function as well as reduction in apoptosis are associated with increased FoxO1 
phosphorylation and the prevention of FoxO1 nuclear translocation in the injured tissue 
[267]. FoxO1 is critical for cellular processes that are involved in reducing oxidative stress, 
cell resistance to apoptosis, cell survival, energy metabolism, and cell death [268]. 
Furthermore, favorable effects of H2S in diabetic cardiomyopathy were attributed to 
considerable reductions in the up-regulated matrix metalloproteinase 2 and transforming 
growth factor (TGF)-β1 in the hearts of diabetic animals [269].

Xie et al. showed that H2S reduces aortic atherosclerotic plaque formation with reductions in 
superoxide generation and the adhesion molecules in STZ-induced LDLr(−/−) mice [270], a 
protective effect attributed to inhibition of oxidative stress via kelch ECH associating protein 
1 (Keap1) sulfhydrylation at Cys151 to activate Nrf2 signaling [270]. H2S also inhibits 
development of atherosclerosis via blocking diabetes-induced oxidative and inflammatory 
stress in endothelial cells, decreases in ROS levels and prevents foam cell formation by 
macrophages [271]. H2S supplementation in diabetic rats normalized plasma H2S levels and 
improved the endothelium-dependent relaxant responses of the thoracic aorta ex vivo, 
without affecting the degree of hyperglycemia [255].

7.7.2. Renal complications of diabetes and H2S—Yamamoto and colleagues 
examined the role of NaSH in diabetic nephropathy, using pancreatic β-cell specific 
calmodulin-overexpressing transgenic mice as a model of diabetes [272]. In this study, 
diabetic mice had higher BUN and albuminuria as well as decreased CSE expression in the 
kidneys, however CBS expression was not altered. Renal peritubular capillary (PTC) blood 
flow velocity, diameter and blood flow were decreased in the kidneys and the hematocrit was 
on the low side. NaSH treatment dilated PTC diameter and increased blood flow in diabetic 
mice but had no effect on PTC blood flow velocity [272]. These findings suggest that the 
CSE-H2S system in the proximal tubules may regulate the interstitial microcirculation and 
that H2S releasing compounds may offer a useful strategy for the treatment of diabetic 
nephropathy.

NaSH improved renal tissue fibrosis in STZ-treated diabetic rats by inhibition of autophagy, 
up regulation of superoxide dismutase, and down-regulation of serine/threonine kinase, 
TGF-β1 and NF-κB protein, as key mediators of diabetic nephropathy [273]. Similarly, 
NaSH administration to diabetic rats attenuated high BUN levels, and reduced renal collagen 
and TGF-β1 expression, without affecting hyperglycemia levels [274]. NaSH also improved 
renal function and decreased mesangial matrix deposition, glomerular basement membrane 
thickening, and renal interstitial fibrosis in diabetic rats [260]; furthermore, NaSH by 
activation of the Nrf2 antioxidant pathway and inhibiting NF-κB signaling decreased high 
glucose-induced oxidative stress [260]. H2S inhibited the renin-angiotensin system in the 
diabetic kidney and attenuated high glucose induced mesangial cell proliferation by 
suppression of the MAPK signaling pathway [260].
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8. NO and H2S interactions in carbohydrate metabolism
In the past few years, much attention has been given to the interactions between NO and 
H2S. There is a growing body of evidence showing that these two gasotransmitters interact 
with each other at the levels of both biosynthesis and biological responses. Although the 
individual roles of these two gasotransmitters in both physiological and pathophysiological 
function are well appreciated, consequences of their interactions need further research. 
Understanding the interactions between these two molecules will prove fruitful in managing 
several pathophysiological conditions.

8.1. Biosynthesis of H2S and NO and their interaction
We recently examined the combination effects of sodium nitrite and NaSH on carbohydrate 
metabolism in type 2 diabetic rats [19]. In this study, nitrite supplementation increased 
serum total sulfide levels and NaSH administration increased serum NOx (nitrate+nitrite), 
however, the combined treatments further increased NOx but not sulfide levels. In addition, 
nitrite supplementation increased mRNA expression levels of CSE and CBS in the soleus 
muscle and CBS in the liver and epididymal adipose tissue of diabetic rats [19]. NaSH 
administration was also shown to decrease total NOS and iNOS activities as well as NO 
content in diabetic rats [275].

Effects of H2S on activity and expression of NOS enzymes are controversial. H2S was 
shown to increase eNOS activity [17, 101, 276], have no effect on iNOS and nNOS activities 
[99], or inhibit all NOS isoforms [4]. These controversies may at least in part be due to the 
time of NOS activity measurement after H2S administration, as the stimulatory effects of 
H2S on eNOS activity are transient [277]. Moreover, low concentrations of L-cysteine (0.1–
3 mM and 0.01–1 mM, respectively) promote the activities of nNOS and iNOS but not that 
of eNOS, and high concentrations inhibit the activity of all NOS enzymes (10 mM for nNOS 
and 3–10 mM for iNOS or eNOS) [4]. This effect of L-cysteine is considered to be 
independent of its property as a reductant and zinc-chelator, because DTT (threo-1, 4-
dimercapto-2, 3-butanediol), a reducing agent and also NaSH that possess similar properties 
did not mimic the facilitating effects of L-cysteine at low concentrations [4], thus the 
underlying mechanisms for these paradoxical effects of L-cysteine on the NOS activity have 
yet to be clarified.

The stimulatory effects of H2S on eNOS activity is partly due to an elevated [Ca2+]i levels 
[1, 17, 95, 101, 278–280], resulting in phosphorylation of eNOS at S1177 [103, 280, 281], 
and inhibition of eNOS S-nitrosylation [85]. Furthermore, H2S prevents eNOS degradation 
[281] and stabilizes the dimeric active form of eNOS [103] through sulfhydration of Cys443 
[17, 85]. H2S-increased [Ca2+]i is mediated through increasing IP3-dependent intracellular 
Ca2+ mobilization, activating KATP channels, and favoring the reverse mode of Na+-Ca2+ 

exchanger [1, 17, 101]. Inhibitory effect of NaSH on eNOS is concentration dependent with 
an IC50 of 170 µM [4]; which is due to the inhibition of BH4 function [282] and decreasing 
the phospho-eNOS (serine 1177) [283].

The interaction between NO and H2S is also influences the diabetic cardiomyopathy; Yang 
and colleagues showed that iNOS expression in STZ-induced diabetic rats is positively 
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correlated with the severity of myocardial injury [275]. In this study, the cardioprotective 
effects of H2S (56 µmol/kg/day NaSH) were related to the decrease in activity and 
expression of iNOS; inhibition of H2S exacerbated myocardial injury [275].

Effect of NO on H2S synthesis is also not straightforward. It has been reported that NO 
increases the activity and expression of CSE [93, 102, 282, 284, 285], has no effect on H2S-
producing enzymes [286], or even directly inhibits CSE activity in vitro with an IC50 of 
about 100 nM [95]. NO-increased H2S synthesis is mediated by cGMP as it is reduced by 
inhibition of sGC [287]. CSE also is a target of S-nitrosylation at its multiple reactive 
cysteine residues [288]. Heme-containing proteins are targets of NO, thus, CBS activity 
might be affected by NO [289].

8.2. Interaction between NO and H2S in biological responses
The interaction between thiol molecules and NO is the bases of NO-induced S-nitrosylation. 
As H2S is a thiol molecule, it is possible that H2S interacts with NO to form nitrothiols 
(RSNO). Incubation of NaSH with SNP in vitro resulted in a time dependent release of 
nitrite, indicating formation of nitrosothiol [290]. In addition, incubation of liver 
homogenates from LPS-treated rats with NaSH or L-cysteine and pyridoxal phosphate to 
increase endogenous production of H2S, increased nitrite formation as an outcome of the 
interaction between exogenous NaSH and endogenous NO [290]. In addition to nitrosothiol, 
interaction of NO and H2S and their respective metabolites can generate different species 
that have significantly different physiological functions as compared to either NO and/or 
H2S [291–294]. These products include nitrosopersulfide (SSNO−) [294–298], thionitrous 
acid (HSNO) [293, 295, 297, 299], and nitroxyl (HNO) [294, 296, 297].

In our previous study, NaSH at a low dose, which had no effect on carbohydrate metabolism, 
potentiated the favorable metabolic effects of sodium nitrite in type 2 diabetic rats [19]. 
These favorable effects were associated with improvement of liver function, reduced 
oxidative stress, and increased mRNA expression and protein levels of GLUT4 in insulin-
sensitive tissues [19]. H2S stimulates NO release from nitrite via increasing the activity of 
XO [300] and also enhances production of sulfinyl nitrite (an NO donor) [301], suggesting 
that nitrite in the presence of H2S becomes more biologically active. In addition, H2S 
maintains sGC in an NO-activatable form [103] and increases cGMP levels by inhibiting 
PDE5 [17].

The interaction between NO and H2S has also been reported in diabetes-induced 
nephropathy; NaSH administration decreased fasting blood glucose, insulin, lipid profile, 
urea and creatinine, as well as insulin resistance in HFD-STZ-induced type 2 diabetic rats 
[302]. NaSH also decreased TNF-α, NF-κB, TGF-β, caspase 3, malondialdehyde (MDA), 
and H2O2 production, whereas it increased catalase and superoxide dismutase activities in 
renal tissue of diabetic rats. However, chronic administration of L-NAME in combination 
with NaSH diminished the favorable effects of NaSH on diabetes-induced nephropathy, 
serum insulin, urea, and creatinine, as well as tissue levels of TNF-α, NF-κB, TGF-β, 
caspase 3, MDA, and H2O2 production, and activity of antioxidant enzymes [302]. 
Collectively, these data strongly suggest that NO has a significant role in the protective 
effects of H2S in diabetes-induced nephropathy.
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Expression of NOX4, the major source of ROS in the kidney, is increased in diabetes. 
Genetic deletion or chemical inhibitors of NOX4 ameliorate kidney injury that is diabetes 
induced [303]. Reduced activity of AMPK is also associated with high glucose-induced 
increases in NOX4 expression; AMPK activation prevents the deleterious effects of glucose 
in the kidney via inhibition of high glucose-induced NOX4 protein expression and 
subsequent ROS generation [304]. NaSH inhibited high glucose-induced NOX4 expression 
via activation of AMPK, an effect which was reversed by L-NAME, suggesting a role for 
NO in mediating the H2S effect; in this study, NaSH increased mRNA and protein 
expression of iNOS but not that of eNOS in the mouse kidney proximal tubular epithelial 
cells [305]. In addition, compound C, a selective AMPK inhibitor, blocked the NaSH-
induced increases in iNOS expression [305]. These data demonstrate that H2S stimulates 
iNOS expression in an AMPK-dependent manner to inhibit the high glucose-induced 
increase in NOX4.

9. Conclusion and perspectives
All H2S-producing enzymes are found in the pancreas and insulin sensitive tissues; however, 
CSE seems to be the major enzyme in these tissues. All NO-producing enzymes are also 
expressed in the pancreas and insulin sensitive tissues; although nNOS expression does not 
appear to be present in any significant amounts in the adipose tissue, it is the main isoform 
of NOS in skeletal muscle. Both NO and H2S have roles in pathophysiology of diabetes and 
regulation of blood glucose levels. Deficiencies in H2S and NO systems have been reported 
in diabetic animal models as well as in human studies. The role of H2S in carbohydrate 
metabolism is however controversial, H2S causes inhibition of insulin secretion by activation 
of KATP channels and inhibition of VDCC in pancreatic β-cells. In addition, H2S through 
inhibition of GLUT4, inhibits insulin-stimulated glucose uptake in insulin sensitive tissues. 
By contrast, H2S protects β-cells against glucotoxicity-induced apoptosis and up-regulates 
insulin signaling pathways essential for glucose utilization, suggesting a potential 
therapeutic approach in diabetes. Regarding H2S administration in animal models, its 
multiple functions against diabetes-induced cardiovascular diseases, nephropathy, and other 
complications have been documented.

In addition, iNOS-derived NO decreases while eNOS-derived NO increases insulin 
secretion. eNOS−/− mice have lower glucose transport in skeletal muscle, indicating 
regulation of glucose uptake by NO. Regarding effects of these gasotranmitters on 
carbohydrate metabolism, translational work in this area requires a deep understanding of 
the biology and pharmacology of H2S and NO, as well as an ability to integrate this 
scientific knowledge with the principles of drug development. In addition, it should be noted 
that in compare to NO, H2S is the youngest member of the gasotransmitter family and 
certainly needs further work to fully elucidate its effects on carbohydrate metabolism. 
Deficiencies in both H2S and NO contribute to the development of diabetes, and in this 
context, combination treatment modalities may prove fruitful in managing diabetes. Another 
area that warrants attention is the possible roles of these gasotransmitters in the diabetes-
cancer-axis; since undesirable changes in the H2S and NO systems contribute to the 
pathophysiological conditions of both, this topic needs further research.
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Abbreviations
3-MST 3-Mercaptopyruvate sulfurtransferase

AMPK AMP-activated protein kinase

ATP Adenosine triphosphate

BH2 7,8- Dihydrobiopterin

BH4 Tetrahydrobiopterin

CAT Cysteine aminotransferase

CBS Cystathionine β synthase

cGMP Cyclic guanosine monophosphate

CSE Cystathionine γ lyase

EGTA Ethylene glycol-bis (β-aminoethyl ether)-N,N,N’,N’-tetra acetic acid

eNOS Endothelial nitric oxide synthase

ER Endoplasmic reticulum

FFA Free fatty acid

G6P Glucose 6-phosphate

GSNO S-Nitrosoglutathione

H2S Hydrogen sulfide

HFD High-fat diet

IL-1β Interleukin 1 beta

iNOS Inducible nitric oxide synthase

IP3R Inositol-3-phosphate receptor

KATP K+ channels

L-NAME L-NG-Nitroarginine methyl ester

L-NMMA NG-monomethyl-L-arginine

MAPK Mitogen-activated protein kinase

NADPH Nicotinamide-adenine-dinucleotide phosphate
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NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells

nNOS Neuronal nitric oxide synthase

NO Nitric oxide

NO2− Nitrite

NO3− Nitrate

NOS Nitric oxide synthase

Nrf2 Nuclear factor-like 2

PDE5 Phosphodiesterase 5

PEPCK Phosphoenolpyruvate carboxykinase

PIP2 Phosphatidylinositol 4, 5-bisphosphate

PIP3 Phosphatidylinositol (3, 4, 5)-triphosphate

PKG Protein kinase G

PLP Pyridoxal-5′-phosphate

PPG Propargylglycine

ROS Reactive oxygen species

sGC Soluble guanylyl cyclase

SH Sulfhydryl group

SNAP S-Nitroso-N-acetylpenicillamine

SNAP23/25 Synaptosome associated protein 23/25

SNP Sodium nitroprusside

SREBF1 Sterol regulatory element-binding transcription factor 1

SSH Hydropersulfid moiety

STZ Streptozotocin

TLR4 Toll-like receptor 4

TNF-α Tumor necrosis factor-α

UCP-2 Uncoupling protein 2

VAMP Vesicle associated membrane protein

VDCC L-type voltage-dependent Ca2+ channels

XO Xanthine oxidase
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Figure 1. Hydrogen sulfide and nitric oxide biosynthetic pathways.
Hydrogen sulfide (H2S) and nitric oxide (NO) are produced by enzymatic and non-
enzymatic pathways. Non-enzymatic production of H2S is mediated through reducing 
elemental sulfur or organic polysulfides. Enzymatic production of H2S is mediated by 
cystathionine γ-lyase (CSE), cystathionine-beta synthase (CBS), and 3-mercaptopyruvate 
sulfuretransferase (3-MST). NO is produced by nitrate/nitrite pathway which can be 
enzymatic or non-enzymatic. NO is also produced from L8 arginine by neuronal NO 
synthase (nNOS), inducible NO synthase (iNOS), and endothelial NO 9 synthase (eNOS).

Gheibi et al. Page 44

Biochem Pharmacol. Author manuscript; available in PMC 2021 June 01.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



Figure 2. Mechanisms of nitric oxide-stimulated insulin secretion in pancreatic β-cell.
Glucose enters the pancreatic β-cells through glucose transporter type 2 (GLUT-2) (1). 
Glucose is phosphorylated by glucokinase (2) and increases cytoplasmic adenosine 
triphosphate (ATP)/adenosine diphosphate (ADP) ratio (3); increased ATP/ADP ratio closes 
(ATP)15 dependent K+ (KATP) channels (4) and causes membrane depolarization (5) and the 
subsequent activation of L-type voltage-dependent Ca2+ channels (VDCC) (6). Elevation of 
cytosolic free Ca2+ concentration is followed by activation of synaptotagmin as a calcium 
sensor (7) and then exocytosis of insulin granules into the circulation (8).
Nitric oxide (NO) causes mitochondrial depolarization, which induces calcium release from 
mitochondria. NO also facilitates glucose-stimulated insulin secretion by S-nitrosylation of 
glucokinase or syntaxin 4.
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Figure 3. Mechanisms of hydrogen sulfide-inhibited insulin secretion from pancreatic β-cell.
Hydrogen sulfide (H2S) inhibits insulin secretion by opening of KATP channels via 
Ssulfhydration. Opening of KATP channels causes membrane hyperpolarization and 
therefore closing of VDCC. H2S also inhibits VDCC directly via S-sulfhydration. H2S 
inhibits glucose-induced mitochondrial membrane hyperpolarization and ATP production. 
G6P, Glucose 6-phosphate; SNAP 23/25, Synaptosome Associated Protein 23/25; VAMP, 
Vesicle Associated Membrane Protein.
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