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Abstract—Nitric oxide (NO) plays important roles in the regulation of renal function and the long-term control of blood
pressure. New roles of NO have been proposed recently in diabetes, nephrotoxicity, and pregnancy. NO derived from
all 3 NOS isoforms contributes to the overall regulation of kidney function, and recent advances in our understanding
of their regulation have been made lately. In this regard, substrate and cofactor availability play important roles in
regulating nitric oxide synthase (NOS) activity not only by limiting enzyme activity but also by influencing the coupling
of NOS with its cofactors, tetrahydrobiopterin and NADPH. Protein–protein interactions are now recognized to be
important negative and positive regulators of NOS. Phosphorylation is another component of the mechanism whereby
NOS is activated or deactivated. Increased NOS expression can also influence enzyme activity; however, the degree of
expression does not always correlate with enzyme activity because increased NO levels can result in inhibition of NOS.
Finally, other potential regulators of NOS such as endogenous L-arginine analogs may also be important. In this article,
we summarize recent advances in the regulation of activity and expression of the NOS isoforms within the kidney.
(Hypertension. 2005;45:1062-1067.)
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Nitric oxide (NO) plays an important role in the control of
renal function and long-term regulation of blood pres-

sure.1–4 This is best evidenced by the fact that inhibiting
intrarenal NO production increased blood pressure.5 In addi-
tion, reduced NO has been identified as a common denomi-
nator of many hypertensive models.6–9 The effects of NO on
blood pressure via actions in the kidney occur through
multiple mechanisms. These include increasing renal blood
flow caused by vasodilatation,10 increasing glomerular filtra-
tion,11 inhibiting sodium transport along the nephron,12–14 and
regulating release of renin.15 NO produced by each of the 3
nitric oxide synthases (NOS), NOS 1, NOS 2, and NOS 3,
reportedly contributes to the regulation of renal function.
Inhibition of NOS activity within the kidney is known to lead
to sodium retention and hypertension. This review addresses
recent advances in our understanding of the role played by
renal NO in various physiological and pathophysiological
conditions, as well as how NO production is regulated.

Roles for Renal NO
Historically, NO produced by the kidney has been thought of
primarily as a factor that regulates urinary volume and
sodium excretion. The physiological effects of NO can be
mediated via changes in renal hemodynamics and/or salt and
water absorption by the nephron. NO reduces renal vascular
tone in part by dilating the afferent arteriole.16 It also increases

glomerular filtration rate.11 NO modulates renin secretion by the
juxtaglomerular apparatus15 and tubuloglomerular feedback.3

Finally, NO regulates transport in various nephron segments as
reviewed recently by Ortiz and Garvin.12

More recently it has been recognized that in a number of
pathophysiological conditions, the actions of NO on renal
hemodynamics and/or nephron transport are altered. In early
diabetes, NO appears to play a more pronounced role in the
maintenance of blood pressure. NOS inhibition results in
hypertension in diabetic but not in control rats,17 showing that
acute NOS 1 inhibition reduces glomerular filtration rate only
in diabetic rats, and therefore suggesting that NO plays an
enhanced role in regulating kidney function during diabetes.18

NO also plays a protective role within the kidney. Augment-
ing NO by means of NO donors decreases nephrotoxicity
caused by acetaminophen.19 NOS 3 polymorphisms associ-
ated with decreased NO production correlate with end-stage
renal disease in humans.20 These data suggest that lack of
renal NO may be important in advanced nephropathy and
renal damage.21 In addition, promoting NO production by
administering L-arginine is known to attenuate pregnancy-
induced hypertension.22 This may be caused by effects on the
kidney, because large increases in NO that enhance renal
blood flow occur during normal pregnancy.23–26 However, the
precise role of each of the 3 NOS isoforms is unclear in these
pathological as well as physiological circumstances.
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The use of selective NOS inhibitors and knockout mice has
allowed us in some instances to investigate the individual
roles of the 3 NOS isoforms in regulating renal function.
However, we have not made a great deal of progress in
identifying the role of NO produced by a given isoform in a
given cell type. This is caused by a variety of factors,
including: (1) the multiplicity of NOS isoforms, which are
activated by different stimuli; (2) varying expression of NOS
isoforms in different cell types; (3) differences in chronic
regulation of expression and activity of the various NOS
isoforms; and (4) the complex anatomy of the kidney, such
that NO produced in one cell type can act in a different cell
type.

As a first step in addressing this problem, our laboratory
developed a technique to restore the function of a single NOS
isoform in a single nephron segment, as in endothelial cells.27

NOS 3 is responsible for autocrine inhibition of NaCl
absorption in the thick ascending limb.28 We showed that
NOS 3 function could be restored selectively to this segment
of NOS 3 knockout mice using an adenovirus with a
tissue-specific promoter.13 Because we were able to transduce
�75% to 95% of thick ascending limbs in vivo, we are now
studying the specific role of the medullary thick ascending
limb NOS 3 in the regulation of salt and water excretion in
vivo. In theory, this same approach could be used for the
other NOS isoforms in other cell types, provided that one has
the appropriate tissue-specific promoter.

Regulation of NOS Activity
NOS 129 and NOS 330 have been thought to be regulated
primarily by increases in intracellular calcium and NOS 2 by
changes in expression of the enzyme.31 However, these views
have recently been challenged by studies in a number of renal
and other cell types. Changes in substrate and cofactor
availability, protein–protein interactions and phosphorylation
state have all come to light as significant regulators of NOS
activity.

Availability of substrate and cofactors as a limiting factor
of NOS activity has been primarily attributed to pathophys-
iological situations. However, cofactor availability may also
be a physiological regulator of NOS activity. Increasing NaCl
concentration in the lumen of the macula densa activates
NOS 129 and also raises intracellular pH. Wang et al32 first
reported that the increase in intracellular pH caused by
increasing luminal NaCl may activate macula densa NOS 1.
Blocking luminal Na�/H� exchange (which prevents alkalin-
ization of macula densa cells) augmented tubuloglomerular
feedback similarly to selective NOS 1 inhibition. More
recently, Liu et al33 found that the increase in NO production
caused by elevated NaCl was blunted when the increase in
intracellular pH was blocked, and that raising intracellular pH
without increasing luminal NaCl was sufficient to induce NO
production. A similar effect of pH on NOS 2 activity was also
reported in mesangial cells.34 In these cells, reducing extra-
cellular pH, and presumably intracellular pH, decreased NOS
2 activity by 80%.

The mechanism by which pH alters NOS 1 and 2 activity
appears to involve a combination of direct effects of protons
per se on the enzyme and availability of the cofactor NADPH.

Decreased NOS 1 activity at low pH has been shown to be
caused by “uncoupling” of NADPH oxidation, resulting in
increased formation of H2O2.35 Mesangial cells exposed to
low pH showed an increase in oxidized nicotinamide adenine
dinucleotide phosphate/citrulline ratio.34 The authors con-
cluded that at low intracellular pH, there is less NADPH to
accept electrons from NOS 2 during production of NO, so
that NADPH is “uncoupled” from NO production. Interest-
ingly, when this occurs, NOS would be predicted to produce
superoxide, which could scavenge any NO produced. How-
ever, at present we know of no reports regarding NOS
uncoupling in other structures within the kidney, such as
vasculature and nephron segments.

The ability of changes in pH to regulate NOS 3 has not
been investigated to our knowledge. However, it would be
surprising if it did not control NO production by NOS 3
because this parameter modulates both NOS 1 and NOS 2
activity. Because virtually all cells have transporters to
regulate intracellular pH, this mechanism may play an im-
portant role in all renal cells. Furthermore, regulation of NOS
activity by intracellular pH may link NO production with
acid/base balance and superoxide generation. The latter has
recently been shown to depend on Na�/H� exchange activity
in the thick ascending limb.36

In addition to NADPH, the availability of tetrahydrobiop-
terin and arginine may also control NOS activity. A decrease
in the ratio of reduced tetrahydrobiopterin to oxidized dihy-
drobiopterin in the renal medulla has been shown to blunt NO
production, and has been proposed to contribute to salt-
sensitive hypertension.37 Oral L-arginine supplementation
reverses p47 phox and gp91 phox expression induced by high
salt in the renal cortex of Dahl rats,38 suggesting that substrate
supplementation can restore the imbalance between NO and
reactive oxygen species, presumably by increasing NOS-
derived NO. In addition, L-arginine transport has been shown
to affect NOS activity and NO production in the renal
medulla.39 Arginine transport by the y� transporter may be
especially significant in angiotensin-dependent forms of hy-
pertension, because y� activity and expression are regulated
by angiotensin.40

Activity of all 3 NOS isoforms is modulated by protein–
protein interactions.41 Protein inhibitor of neuronal NOS
(PIN),42,43 caveolin-1,44 caveolin-3,45 and several proteins
bearing PDZ domains46 that influence targeting to discrete
membrane domains of excitable tissues regulate NOS 1
activity. Although some of these proteins have been localized
to the kidney,47 we know of no studies investigating the role
of these proteins in renal NOS 1 activity.

Several proteins have been identified that directly interact
with NOS 2. Kalirin and NOS-associated protein-110 have
been shown to interact with NOS 2 and inhibit its activity.48

In addition, Kuncewicz et al49 found that Rac1 and Rac2,
members of the Rho GTPase family, both interact with NOS
2. These authors also demonstrated that the point of interac-
tion for Rac2 is the NOS 2 oxygenase domain and that
overexpression of Rac2 augments NO production in immune-
activated murine macrophages. Because Rac is important for
assembly and activation of NADPH oxidase, this finding
suggests coordinated regulation of NADPH oxidase and NOS
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2-derived NO production. However, these interactions have
not been shown to occur in renal cells to our knowledge.

Since the original publications showing that NOS 3 activity
is inhibited by caveolin-150 and enhanced by heat shock
protein 9051 in endothelial cells, several other protein–protein
interactions have been defined, including discovery of the
NOS 3 inhibitory proteins NOSIP52 and NOSTRIN.53 It is
likely that these regulatory proteins alter NOS 3 activity in all
endothelial cells, including those in the kidney. However,
their significance in the regulation of NOS 3 activity and/or
expression in renal epithelial and interstitial cells has not been
thoroughly investigated except for the interaction of NOS 3
and heat shock protein 90. Recently, activation and translo-
cation of NOS 3 in the thick ascending limb have been
reported to require heat shock protein 90 ATPase activity.54

Phosphorylation of NOS 3 by protein kinase A was first
reported in 2001.55 However, not until NOS 3 activation by
shear stress was shown to be mediated by phosphorylation of
serine 1179 in endothelial cells56 were the potential conse-
quences appreciated. Flow-induced activation of NO produc-
tion occurs in afferent arterioles,16 inner medullary collecting
ducts,57 and thick ascending limbs.58 In thick ascending
limbs, activation of NOS 3 by flow is caused by phosphory-
lation of serine 1179, as it is in endothelial cells. It is unclear
whether this is also true for renal vessels, because flow-
induced activation of NOS 3 in the vasa recta does not appear
to be caused by phosphorylation at serine 1179, but rather
simply an increase in intracellular calcium.30 In addition to
serine 1179, at least 4 other phosphorylation sites on NOS 3
are known.59 Insulin has also been suggested to enhance NOS
3 activity in the renal medulla by dephosphorylating threo-
nine 495 in diabetic rats.60 Phosphorylation of NOS 3 at this
amino acid may be significant because threonine 495 has
been proposed to be a “switch” that determines whether NOS
3 produces NO or superoxide.61 Thus, measurements of
bioavailable NO are crucial to determine the physiological
significance of increased NOS phosphorylation at this amino
acid.

Compared with our understanding of the role of phosphor-
ylation of specific amino acids in NOS 3, our knowledge of
NOS 1 and 2 is minimal. NOS 1 is known to be constitutively
phosphorylated at serine 741, and dephosphorylation at this
amino acid increases enzyme activity.62 In addition, phos-
phorylation at serine 847 can attenuate the catalytic activity
of the enzyme in neuronal cells.63 Presumably, homologous
amino acids in the different NOS isoforms have the potential
to be phosphorylated; however, the effect of phosphorylating
such putative sites on NOS 1 and NOS 2 within the kidney
has not been studied to our knowledge.

Hormonal Regulation of NOS
Renal NOS activity recently has been shown to be acutely
regulated by several humoral factors. Arima et al64 reported
that aldosterone can activate NOS 3 in renal arterioles,
leading to NO production; however, the mechanism involved
was not investigated. Taylor et al65 found that in ETB

receptor-deficient rats, medullary NOS activity and renal
endothelin production are decreased, indicating that renal
endothelin regulates NOS 3 activity as reported for the thick

ascending limb.66 Mori et al67 found that vasopressin stimu-
lated a rapid increase in intracellular NO via increased
intracellular calcium levels in the inner medullary collecting
duct. Although they did not assess which NOS isoform was
activated, NOS 3 is likely responsible because of its high
expression in the collecting duct. Finally, angiotensin II
acutely regulates NO production by NOS 1 in the macula
densa, apparently because of increased intracellular calci-
um.29 However, the physiological significance of this finding
is unclear, because angiotensin II enhances tubuloglomerular
feedback, whereas NO inhibits it.

Regulation of Expression
Chronic changes in NOS expression may be important in
conditions such as high salt intake and diabetes. High salt
increases the expression of all 3 NOS isoforms in the
medulla.68 The mechanisms by which this occurs have not
been worked out for NOS 1 and 2, but have been defined for
NOS 3 in medullary thick ascending limbs.69 High salt
increased outer medullary osmolality and hyperosmolality
enhanced NOS 3 expression in primary thick ascending limb
cultures, and an ETB receptor antagonist could block this
effect. Hyperosmolality also enhanced endothelin-1 release.
Finally, in vivo a dual ETA/ETB antagonist blocked the effects
of high salt on NOS 3 expression.69 In addition, a low-sodium
diet causes chaperone heat shock protein 90 to relocate from
the apical to the basolateral side of the thick ascending limb.70

Because NOS 3 is known to interact with heat shock protein
90, leading to increased enzyme activity,51,71 heat shock
protein 90 may play a role in regulation of NOS 3 expression
by salt intake.

Exposure to endothelin-1 alone also augments NOS 3
expression in the thick ascending limb.72 Similarly,
endothelin-1 stimulates NOS 3 expression in inner medullary
collecting ducts.73 However, unlike the thick ascending limb
where the effect was mediated only by ETB receptors,72 in the
inner medullary collecting duct both ETA and ETB were
involved. Osmotic stimuli have also been shown to increase
NOS 3 expression in inner medullary collecting ducts in
culture.74 This may be important for regulation of function in
the renal medulla, where osmolality is extremely variable and
dependent on salt and water intake. Given that similar factors
regulate NOS 3 expression in the inner medullary collecting
duct and thick ascending limb, high salt may induce expres-
sion by similar mechanisms in both cell types.

Changes in NOS expression may also be important in
diabetes. High glucose increases NOS 2 mRNA and protein
expression in mesangial cells in the presence of cytokines.75

The increase was mediated by protein kinase C. Transcrip-
tional/translational regulation of NOS 2 in mesangial cells by
glucose may also involve JAK2, p38 MAPK, and nuclear
factor ��, which have been shown to regulate NOS 2
expression in renal epithelial cells.76

Repression of NOS 2 transcription may be just as impor-
tant as induction in controlling the final amount of NOS 2
protein. Yu and Kone77 demonstrated that treating mesangial
cells with DNA methylation inhibitors augmented cytokine
induction of endogenous NO production and NOS 2 protein.
In vitro methylation of the NOS 2 promoter blunted its
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activity, whereas inhibition of DNA methyltransferase in-
creased NOS 2 promoter activity and nitrate production.
Moreover, in vitro methylation inhibited binding of nuclear
factor �B to the NOS 2 enhancer element. These results
suggest that cytosine methylation is an important repressor of
NOS 2 transcription in these cells. Whether NOS 1 and 3
expressions are regulated in diabetes is unclear and the
mechanisms involved have not been extensively studied.

Other Regulators of NOS Activity
In addition to the regulators described, several other com-
pounds may modulate NOS activity in the kidney. The most
important of these in terms of hypertension may be the
endogenous L-arginine analogues such as asymmetrical di-
methylarginine. This compound inhibits NOS activity,78–80

and circulating concentrations are elevated in hyperten-
sion81,82 and by high salt intake.83 Carbon monoxide produced
by heme oxygenase has recently been recognized as a NOS
regulator,84,85 although the nature of this interaction is still
unclear. Several drugs may have a marked impact on NO
production. Dobrian et al86 recently reported that the perox-
isome proliferator-activated receptor-� agonist and insulin
sensitizer pioglitazone prevented the development of hyper-
tension in obese hypertensive rats. This therapeutic effect was
at least partially attributed to increased renal NO production
and bioavailability caused by decreased superoxide genera-
tion. However, the exact site of NO production is unknown,
because PPAR� receptors are present in many renal cells that
express NOS and produce NO.87–90 Finally, reactive oxygen
species production by the kidney and their role in scavenging
NO have recently received a great deal of attention.91 Super-
oxide plays a quintessential role in determining NO bioavail-
ability and thus its effect. This topic is beyond the scope of
this review and has recently been reviewed.91,92

Perspectives
The complexity of the kidney, with its nearly 20 different
tissue types arranged in a geometry that also impacts on
function, has slowed progress of both cellular and whole-
animal approaches to understanding the role of NO in
regulating renal function. To study the contribution of the
various NOS isoforms, 2 lines of research have been fol-
lowed: (1) assessment of renal function using isolated cells
and individual segments; and (2) studies of renal function in
vivo. Part of our limitation in understanding NOS regulation
comes from our inability to measure biologically active NO
in intact systems. This is important because: (1) protein
expression does not necessarily correlate with enzyme activ-
ity and thus NO production; (2) the assay normally used to
assess enzyme activity (conversion of L-arginine to
L-citrulline) requires the addition of substrate and cofactors,
and thus regulation of enzyme activity by decreased substrate
or cofactor availability may be missed; and (3) enzyme
activity may not represent bioavailable NO, because NO can
rapidly be scavenged by other substances such as superoxide.
Although much progress has been made regarding our under-
standing of NOS regulation within the kidney, in some
instances the information was obtained from nonrenal cells
and in vitro systems, and thus more research is required to

fully understand the mechanisms whereby NOS is regulated
within the different structures in the kidney as well as their
physiological significance. New technology that allows dele-
tion or expression of a particular gene in specific tissues in the
kidney is an important scientific advance. Over the past few
years, various animal models have been developed using such
technology13,93–95 that provide new means of studying the
physiological actions of a single NOS isoform in a single cell
type at a specific point in time in vivo.
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